
Traffic-Aware Rule-Cache Assignment in SDN:
Security Implications

S. Misra1 N. Saha1 R. Bhakta2

1Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

2Department of Computer Science and Engineering
National Institute of Technology, Durgapur

IEEE International Conference on Communications (ICC), 2020

1 / 12



Motivation

I Match-action flow-rules for data-plane forwarding

I Limited flow-rule capacity at SDN switches

I Compression-based strategies → unseen flows

2 / 12



Motivation

I Match-action flow-rules for data-plane forwarding

I Limited flow-rule capacity at SDN switches

I Compression-based strategies → unseen flows

2 / 12



Motivation

I Match-action flow-rules for data-plane forwarding

I Limited flow-rule capacity at SDN switches

I Compression-based strategies → unseen flows

2 / 12



Motivation

I TCAM hardware augmented with inexpensive
software switches1 2

I Distributed software switches → scalability and fault
tolerance

I Non-uniform latencies between hardware and
software cache instances + many-to-many mapping
→ rule-cache assignment problem

1N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined
Networks,” in Proc. of the ACM SOSR, New York, USA, 2016, pp. 6:1–6:12.

2A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

3 / 12



Motivation

I TCAM hardware augmented with inexpensive
software switches1 2

I Distributed software switches → scalability and fault
tolerance

I Non-uniform latencies between hardware and
software cache instances + many-to-many mapping
→ rule-cache assignment problem

1N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined
Networks,” in Proc. of the ACM SOSR, New York, USA, 2016, pp. 6:1–6:12.

2A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

3 / 12



Motivation

I TCAM hardware augmented with inexpensive
software switches1 2

I Distributed software switches → scalability and fault
tolerance

I Non-uniform latencies between hardware and
software cache instances + many-to-many mapping
→ rule-cache assignment problem

1N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined
Networks,” in Proc. of the ACM SOSR, New York, USA, 2016, pp. 6:1–6:12.

2A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

3 / 12



Rule-cache assignment

I Hardware switches H and software cache instances C

I Scalability quota qsj of cache instance j ∈ C
I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)

4 / 12



Rule-cache assignment

I Hardware switches H and software cache instances C
I Scalability quota qsj of cache instance j ∈ C

I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)

4 / 12



Rule-cache assignment

I Hardware switches H and software cache instances C
I Scalability quota qsj of cache instance j ∈ C
I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)

4 / 12



Rule-cache assignment

I Hardware switches H and software cache instances C
I Scalability quota qsj of cache instance j ∈ C
I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)

4 / 12



Rule-cache assignment

I Hardware switches H and software cache instances C
I Scalability quota qsj of cache instance j ∈ C
I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)

4 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C

5 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

6 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

6 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

6 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

cj

hi

dij

in-band
communication

data-plane link

control traffic

6 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

cj

h′i

control link

hi

α(t)i α(t)′i

λ(t)j = α(t)ix(t)ij + α(t)i′x(t)i′j

x(t)ij = 1 x(t)i′j = 1

6 / 12



Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij

cj

hi

control traffic
α(t)i

hop count hij = 3

o(t) = hijα(t)ix(t)ij

6 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C

x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system

7 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations

I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations

I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations

I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations
I Hardware switches’ objective → minimize delay δ(t)

I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations
I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations
I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992

8 / 12



Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance

 10

 15

 20

 25

 30

 35

 40

 45

 50

10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
 i

n
st

a
n
c
e
s 

(%
)

Hardware switches

TRC

1A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

9 / 12



Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance

 10

 15

 20

 25

 30

 35

 40

 45

 50

10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
 i

n
st

a
n
c
e
s 

(%
)

Hardware switches

TRC

1A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

9 / 12



Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance

 7

 8

 9

 10

 11

 12

 13

 14

100 500 1000 1500 2000

A
v
g
. 
d
el

ay
 (

m
s)

Flows/sec

TRC
MDC
RCA

1A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

9 / 12



Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance

 7

 8

 9

 10

 11

 12

 13

 14

100 500 1000 1500 2000

A
v
g
. 
d
el

ay
 (

m
s)

Flows/sec

TRC
MDC
RCA

1A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

9 / 12



Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance

 7

 8

 9

 10

 11

 12

 13

 14

100 500 1000 1500 2000

A
v
g
. 
d
el

ay
 (

m
s)

Flows/sec

TRC
MDC
RCA

1A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for improving SDN scalability,” in
Proc. of the IEEE INFOCOM Workshop, April 2016, pp. 610–615

9 / 12



Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

100 500 1000 1500 2000

O
v
er

h
ea

d
 (

p
k
ts

/s
ec

)

Flows/sec

TRC
MDC
RCA

10 / 12



Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

100 500 1000 1500 2000

O
v
er

h
ea

d
 (

p
k
ts

/s
ec

)

Flows/sec

TRC
MDC
RCA

10 / 12



Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

A
v
g
. 
it

er
at

io
n
s

CacheFlow instances (#)

TRC

10 / 12



Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

A
v
g
. 
it

er
at

io
n
s

CacheFlow instances (#)

TRC

10 / 12



Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

A
v
g
. 
it

er
at

io
n
s

CacheFlow instances (#)

TRC

10 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.

11 / 12



Thank You

12 / 12


