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Motivation

I Match-action flow-rules for data-plane forwarding

I Limited flow-rule capacity at SDN switches

I Compression-based strategies → unseen flows
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Motivation

I TCAM hardware augmented with inexpensive
software switches1 2

I Distributed software switches → scalability and fault
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Rule-cache assignment

I Hardware switches H and software cache instances C

I Scalability quota qsj of cache instance j ∈ C
I Fault-tolerance quota qfti of hardware switch i ∈ H

I Minimize software cache instances (static)

I Traffic-aware assignment (dynamic)
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Rule-cache assignment: minimize cache instances

I Introduce binary variables x(t)ij denote assignment between switch i and cache j

I Introduce binary variables w(t)j to keep track of cache instances

min
∑

w(t)j

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj w(t)j , ∀j ∈ C

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C
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Rule-cache assignment: traffic-aware assignment

I Delay between switch i and software cache j

I Control overhead in timeslot t

I Delay δ(t) → propagation delay + queuing delay

I Propagation delay →
∑
i

∑
j

dij
v

I Queuing delay →
∑
j

1

µj − λ(t)j

I Control overhead o(t) =
∑

j

∑
j hijα(t)ix(t)ij
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Rule-cache assignment: traffic-aware assignment

The problem can be formulated as an integer program as follows:

min ηδ(t) + (1− η)o(t)

subject to λ(t)j ≤ βµj ∀j ∈ C
x(t)ij ∈ {0, 1},∀i , j∑
j∈C

x(t)ij = qfti , ∀i ∈ H

∑
i∈H

x(t)ij ≤ qsj , ∀j ∈ C

I Time consuming to solve for large instances!

I Efficient solution needed for dynamic system
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Our Approach

I Based on matching theory concepts1

I First stage: network statistics collection

I Second stage: build preference relations

I Hardware switches’ objective → minimize delay δ(t)
I Software caches’ objective → minimize control overhead o(t)

I Third stage: two sided matching

1: Each j ∈ C sends association request to its preferred subset Ci (H).
2: Each i ∈ H refuses all expect the preferred qfti cache instances.
3: repeat
4: Each j ∈ C sends association request to its preferred subset Ci (H),

including those already sent to who have not refused it yet.

5: Each i ∈ H refuses all except the preferred qfti cache instances.
6: until convergence to a pairwise-stable outcome

1A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game Theoretic Modeling and Analysis. Cambridge
University Press, 1992
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Results

I Solved minimum cache assignment using
GLPK solver

I No. of caches → approx. 15% of hardware
switches

I Benchmarks: random assignment (RCA)
and minimum distance assignment
(MDC)1

I Proposed scheme (TRC) reduces delay by
approx. 10% and 35% compared to MDC
and RCA

I MDC suffers due to load imbalance
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Results

I Proposed scheme (TRC) reduces overhead
by approx. 19% and 39% compared to
MDC and RCA

I Effect of traffic rate significant

I Algorithm quickly converges in a few
iterations

I No. of cache instances does not affect the
iterations significantly

I Efficient for dynamic re-assignment with
varying traffic conditions
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Security Implications

I Attacks specific to SDN include denial-of-service by attacking control-plane or flow-table1

I Control plane attack → intentionally crafted packets to trigger table-miss

I Flow-table attack → design packets to install large no. of flow-rules

I Software cache architecture provides large flow-space; reduces probability of table-miss
and flow-table overflow

I Reduces chances of unseen flows compared to compression-based strategies

I Dynamic re-assignment capability reduces network overhead

1R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2015, pp. 1322–1326.
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