

# Dynamic Network Slice Assignment in Software-Defined IoT Networks



Niloy Saha and Sudip Misra Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India

IEEE GLOBECOM 2020

# Controller mapping in SDN





# Network slicing for IoT





Physical network

# Network slicing for IoT





**Network slices** 

# Network slicing for IoT







Physical network

**Network slices** 





Physical network





Physical network

### Our work in a nutshell







Re-mapping to handle increased load

> Mapping between network slices and network slice controllers.

- How to map? ٠
- When to re-map? ٠



#### Objective

$$\phi(t) = \sum_{c \in C} \phi_c^{ctrl}(t) + \sum_{c \in C} \phi_c^{serv}(t) \qquad \longleftarrow \qquad \text{control overhead} \quad + \text{ operating expenses}$$

#### Constraints

$$\begin{split} \sum_{f \in F} g_c^f &= 1 \quad \forall c \in C, \quad \sum_{c \in C} g_c^f &= 1 \quad \forall f \in F \\ \theta_c(t) &\leq \beta \mu_c \quad \forall c \in C \\ \Delta_c^f &\leq \Delta_{max}^f \quad \forall c \in C, \forall f \in F \end{split}$$

One-to-one mapping between slice controllers and flow-spaces

Load should not exceed service rate

Delay experienced at slice controller should not exceed delay requirements

# When to map?





### Trade-off

Expected cost of migration in terms of communication overhead

### Key idea

- Keep track of the development of QoS violations and determine optimal time t\* to minimize expected cost
- One step look ahead (OSLA) rule: trigger re-mapping at the first step in which the expected reward is as high as continuing to next time step and then re-computing



### Benchmarks

### **Controller Mapping**

• Fractional mapping scheme (SFM)<sup>1</sup>

### Scheduling strategies for controller mapping

- Threshold-based strategy
- Periodic re-mapping strategy

### Simulation settings

| Parameter                   | Value     |
|-----------------------------|-----------|
| Switches                    | 20        |
| Slice controllers           | 10        |
| Proxy controllers           | 2         |
| Flow-spaces                 | 10        |
| Controller capacity         | 100 - 200 |
| Max. controller utilization | 0.9       |

1. V. Sridharan, M. Gurusamy and T. Truong-Huu, "On Multiple Controller Mapping in Software Defined Networks With Resilience Constraints," in *IEEE Communications Letters*, vol. 21, no. 8, pp. 1763-1766, Aug. 2017

# Comparison of controller mapping schemes





70% reduction in QoS violations in Distribution 1

RT

DT

# Scheduling strategies for re-mapping



- Both proposed and thresholdbased schemes maintain the QoS level
- 20% reduction (on average) over the threshold-based scheme
- 34% reduction in the expected cost of re-computation



- Dynamic network slice assignment scheme for software-defined IoT networks
- Up to 70% reduction in QoS violations while considering IoT traffic
- Dynamic scheduler reduces number and cost of re-computation by 20% and 34%, respectively compared to threshold-based strategies

Our work on SDN for IoT https://cse.iitkgp.ac.in/~smisra/theme\_pages/sdn/