
1

Monarch: Monitoring Architecture for 5G and
Beyond Network Slices

Niloy Saha∗, Nashid Shahriar†, Muhammad Sulaiman∗, Noura Limam∗, Raouf Boutaba∗ and Aladdin Saleh‡

{n6saha, m4sulaim, n2limam, rboutaba}@uwaterloo.ca, nashid.shahriar@uregina.ca, aladdin.saleh@rci.rogers.com
∗University of Waterloo, Canada, †University of Regina, Canada, ‡Rogers Communications, Canada Inc.

Abstract—Data-driven algorithms play a pivotal role in the
automated orchestration and management of network slices
in 5G and beyond networks, however, their efficacy hinges
on the timely and accurate monitoring of the network and
its components. To support 5G slicing, monitoring must be
comprehensive and encompass network slices end-to-end (E2E).
Yet, several challenges arise with E2E network slice monitoring.
Firstly, existing solutions are piecemeal and cannot correlate
network-wide data from multiple sources (e.g., different net-
work segments). Secondly, different slices can have different
requirements regarding Key Performance Indicators (KPIs) and
monitoring granularity, which necessitates dynamic adjustments
in both KPI monitoring and data collection rates in real-time
to minimize network resource overhead. To address these chal-
lenges, in this paper, we present Monarch, a scalable monitoring
architecture for 5G. Monarch is designed for cloud-native 5G
deployments and focuses on network slice monitoring and per-
slice KPI computation. We validate the proposed architecture
by implementing Monarch on a 5G network slice testbed, with
up to 50 network slices. We exemplify Monarch’s role in 5G
network monitoring by showcasing two scenarios: monitoring
KPIs at both slice and network function levels. Our evaluations
demonstrate Monarch’s scalability, with the architecture adeptly
handling varying numbers of slices while maintaining consistent
ingestion times between 2.25 to 2.75 ms. Furthermore, we
showcase the effectiveness of Monarch’s adaptive monitoring
mechanism, exemplified by a simple heuristic, on a real-world
5G dataset. The adaptive monitoring mechanism significantly
reduces the overhead of network slice monitoring by up to 76%
while ensuring acceptable accuracy.

Index Terms—5G, Network Slicing, KPI, Monitoring,
Open5GS

I. INTRODUCTION

Network slicing enables the creation of multiple isolated
virtual networks for different services on a common phys-
ical infrastructure, but also increases network complexity
and necessitates the use of Artificial Intelligence/Machine
Learning (AI/ML) techniques for automated orchestration and
management [1]–[3]. State-of-the-art algorithms for network
slicing are data-driven and rely on large amounts of data
collected from the network. Effective network monitoring is a
fundamental component of these systems; it is the process of
constantly monitoring the network and network components
by collecting data about their state and behavior. To support
5G slicing, monitoring must be timely and accurate, and
encompass network slices E2E.

In this context, a variety of monitoring solutions exist;
unfortunately, they have several limitations. First, 5G slices
span multiple technological domains and necessitate unified

Transport Network Radio Access

Network
Core

Network

URLLC Slice
• Latency (per-flow)
• Jitter (per-flow)
• Throughput (aggregate, ±5% tol.)

eMBB Slice
• Throughput (per-flow)

Fig. 1: Figure illustrating two distinct network slices: enhanced
mobile broadband (eMBB) and ultra-reliable low-latency slice
(uRLLC), each spanning diverse technological domains with
varying KPIs.

monitoring encompassing different network segments on a per-
slice basis, as illustrated in Figure 1. To check if 5G services
satisfy the desired Quality of Service (QoS) requirements,
standardization bodies such as 3GPP have defined several slice
KPIs such as throughput, latency, and reliability [4]. These
KPIs are often composite, requiring the collection and corre-
lation of multiple infrastructure and network function (NF)
related metrics from different network segments. However,
existing monitoring approaches predominantly concentrate on
individual NFs or segments. For instance, cloud monitoring
tools like OpenStack Ceilometer [5] and Nagios [6] facilitate
tracking performance metrics such as CPU and memory uti-
lization of NFs and the infrastructure on which they are hosted.
For the Radio Access Network (RAN) domain, proprietary
monitoring solutions exist from vendors such as Ericsson [7],
and open-source solutions such as FlexRAN [8]. While efforts
in literature, such as [9], [10], aim to enhance efficiency, they
primarily center on individual NFs.

Second, network operators are expected to provision several
network slices on their 5G infrastructure, catering to the needs
of different 5G services. The ability to support a large number
of network slices is essential for 5G and beyond networks.
Emerging applications like cloud gaming, AR/VR, holographic
communication, and vehicle-to-everything (V2X) communi-
cation have diverse requirements that demand customized
network slices to meet their specific needs. In scenarios like
smart cities [11], and massive IoT deployments, the ability
to scale up to hundreds or thousands of slices ensures that

2

the network can effectively manage and isolate resources
across a wide range of use cases. Fixed high-granularity
monitoring across all slices, however, can lead to excessive use
of network resources (i.e., overhead) and produce redundant
(i.e., unnecessary) data. Therefore, network slice monitoring
should also scale to the number and variety of slices and
be cost-effective in minimizing monitoring overhead while
guaranteeing monitoring accuracy. As the number of slices
grows, the monitoring system must efficiently manage the
increased data volume generated by each slice. The monitoring
architecture must scale with the number of slices to check
adherence to slice-specific SLAs and to enable precise per-
slice resource allocation and admission control. Additionally,
network slices may have different requirements in terms of
resources and QoS. This in turn requires slice-specific KPI
monitoring at different levels of granularity. The recent litera-
ture [12]–[15] on monitoring for 5G and beyond networks has
focused on addressing the scalability aspect, but falls short in
providing support for network slicing. Existing solutions also
lack concrete implementation for computing slice KPIs and
APIs for specifying monitoring requests at the network slice
level. Some works including [12], [13] have no support for
network slicing, while others such as [14], [15] mention slicing
from an abstract architectural standpoint without providing
details on how actual slice monitoring and computation of
KPIs may be achieved.

Third, the next generation of 5G and beyond networks is
progressively embracing cloud-native technologies (such as
containers) to support multiple distributed NFs per network
slice. This requires network management to leverage container
orchestration tools such as OpenShift and Kubernetes. A
related challenge for monitoring is that traditional monitoring
tools cannot easily observe ephemeral cloud-native elements
such as containers.

To address the aforementioned challenges of 5G network
slice monitoring, a new comprehensive solution is needed,
which meets the following requirements: (1) Scalable mon-
itoring that adapts effectively to the growing number of
network slices and seamlessly integrates into cloud-native 5G
environments. (2) Ability to define monitoring requests at a
high level of abstraction, ensuring ease of use in network
automation. (3) Mechanisms to effectively balance the trade-
off between monitoring accuracy and overhead, optimizing
resource utilization and network performance.

To fulfill these requirements, this paper presents Monarch,
a comprehensive and scalable monitoring architecture for
5G and beyond networks. Monarch focuses on monitoring
network slices, computing slice KPIs, providing an API for
specifying monitoring requests, and effectively managing the
trade-off between monitoring accuracy and overhead. In this
context, we make the following contributions:

• We present Monarch, a scalable monitoring architecture
for cloud-native 5G network deployments, for providing
a holistic view of E2E network slices (§III-A).

• We design a northbound API that allows for specifying
monitoring requests at various levels e.g., slice level and
network function level (§III-B), as well as an adaptive

monitoring heuristic designed to strike a balance between
monitoring accuracy and overhead (§III-D).

• We implement a prototype of Monarch and integrate it
with a 5G network slice testbed comprising of popular
open-source projects UERANSIM and Open5GS (§IV).
We exemplify Monarch’s role in 5G network monitoring
by showcasing two scenarios: monitoring KPIs at both
the slice and network function levels (§IV). To foster
collaboration and further development, we make the
implementation publicly available [16].

• We evaluate the Monarch prototype (§V) and demonstrate
that Monarch can scale well with the number of slices —
i.e., monitor up to 50 network slices, without a significant
increase in overhead and resource usage. Based on real
5G traffic traces, we show that Monarch can reduce
overhead by up to 76% while maintaining acceptable
accuracy using a simple adaptive monitoring heuristic.

This paper builds upon our prior work on network slice
monitoring [17], significantly expanding its scope. First, we
enhance the related works section by incorporating rele-
vant studies on monitoring data extraction, KPI computa-
tion, AI/ML solutions, and the 3GPP network data analytics
function (NWDAF)-based solutions within the context of 5G
network slice monitoring. Second, we refine the monitoring
API to align it more closely with 3GPP specifications for
defining 5G KPIs. Additionally, we provide detailed examples
illustrating the API’s usage for specifying requests at both the
network slice and network function levels. Third, we introduce
an adaptive monitoring mechanism into Monarch based on
a simple heuristic and evaluate its performance using real-
world 5G traffic traces, presenting insights into the accuracy-
overhead trade-off of network slice monitoring. Fourth, we
significantly extend our experimental results by deploying
and evaluating Monarch with up to 50 network slices. We
provide a detailed breakdown of Monarch’s resource usage,
highlighting the relative contributions of key components.
Further, we conduct additional experiments to analyze the
factors influencing monitoring data ingestion time, which helps
guide best practices for optimizing data ingestion and mini-
mizing latency. Lastly, we release the implementation code
demonstrating Monarch’s integration with Open5GS [18], a
widely-used 3GPP R16 compliant 5G core implementation.

II. LITERATURE SURVEY

In recent literature, there have been several works that have
focused on 5G network monitoring. We coarsely characterize
them into the following categories:

Monitoring architectures. Several works [12]–[15] focus
on scalable monitoring architectures for 5G networks. Perez et
al. [12] present a monitoring architecture for a multi-site 5G
platform. The proposed architecture consists of a two-level
hierarchy of intra-site and inter-site publish-subscribe brokers,
with infrastructure-specific agents for extracting and trans-
lating metrics from heterogeneous infrastructure components.
While the authors address scalability, they do not discuss E2E
monitoring or network slicing. Beltrami et al. [14] propose an
architecture for monitoring E2E network slices across multiple
heterogeneous domains. Their framework facilitates horizontal

3

TABLE I: Comparison of Monarch with state-of-the-art. Legends in the table represent supported (✓), not supported (✗),
partial/limited support and/or implementation details missing (◆); “PM” refers to performance metrics.

Features Perez et al. [12] Beltrami et al.
[14]

Giannopoulos et
al. [13]

Mekki et al. [15] Monarch

Scalability (§V-B) ✓ ✓ ✗ ✓ ✓

Monitoring request API (§III-B) ✗ ✗ ✗ ◆ ✓

Adaptive monitoring mechanisms (§III-D) ✗ ✗ ✗ ✗ ✓

5G PM and network slice KPIs (§IV) ✗ ◆ ✗ ◆ ✓

5G network integration (§IV) ✗ ✗ ✓ ✓ ✓

Code availability (§IV) ✓ ✗ ✗ ✗ ✓

and vertical elasticity within the monitoring infrastructure
by dynamically instantiating and removing monitoring agents
in the NFs related to a slice. The authors propose several
components such as slice measurements aggregator and en-
gine controller for tuning the configuration of the monitoring
components (e.g., monitoring frequency), however, they do
not provide any quantitative analysis or results related to the
resource consumption of the proposed architecture.

In a similar vein, Giannopoulos et al. [13] present a mon-
itoring framework for 5G systems, focusing on monitoring
different levels of the 5G system. They demonstrate how open-
source monitoring tools such as Netdata and Prometheus can
collect system and network-level metrics by deploying their
proposed framework on a testbed consisting of a physical
gNB and the open-source Open5GS 5G standalone (SA) core.
However, they do not discuss how to capture per-slice KPIs.
Finally, Mekki et al. [15] present a scalable monitoring
architecture for network slices, including collecting metrics
from different network slice segments. This is achieved by
deploying domain (e.g., RAN and edge/core) and slice-specific
collection agents, instantiated per slice, which collect and
aggregate monitoring data per slice. Slice identification is
achieved using a custom protocol that encapsulates monitoring
data with a header containing slice identifiers. While this
architecture introduces several useful abstractions, the paper
falls short in describing how slice-level aggregations are done,
and how domain orchestrators compute KPIs from monitoring
data of NFs in a slice.

AI/ML solutions. These works [9], [19], [20] leverage artifi-
cial intelligence (AI) and machine learning (ML) approaches
to aid in reducing the communication overhead incurred in
5G network monitoring. In this context, Xie et al. [19]
advocate for integrating joint monitoring and analytics in
5G networks to balance monitoring costs and service assur-
ance. They propose partial monitoring to reduce monitoring
overhead, achieved by a combination of feature selection,
flow selection, and optimal probe placement. Their simula-
tions show that analytics can inform monitoring frequency
decisions, but use simplistic models and arbitrary probability
values without concrete implementation. Sciancalepore et al.
[9] and Plascinskas et al. [20] present similar ideas with
more concrete implementation details. Sciancalepore et al. [9]
improve a management and orchestration (MANO) system’s
decisions while minimizing the network monitoring load. The
authors use a two-stage ML-based approach consisting of
an unsupervised learning algorithm to cluster similar NFs

into NF profiles, and a reinforcement learning algorithm to
find a trade-off between monitoring load and good MANO
decisions. Plascinskas et al. [20] extend this idea by utilizing
the time-varying characteristics of different NFs to adjust the
monitoring frequency of individual metrics in an NF. However,
these works mainly focus on individual NFs and do not address
a network slice as a whole.

Monitoring data extraction. These works [21], [22] focus
on extracting monitoring data from different components of
the 5G network. Both Janus [21] and 5GC-Observer [22]
represent innovative approaches to monitoring complex as-
pects of 5G networks, leveraging eBPF technology to extract
crucial monitoring data. Janus focuses on the RAN, enabling
inline execution of custom codelets for real-time monitoring
and control. By utilizing eBPF, Janus allows direct access
to raw RAN data structures, facilitating the collection of
diverse statistics and enabling real-time inference and control
decisions. On the other hand, 5GC-Observer targets the 5G
Core (5GC) system, providing insight into the exchanges
between network functions, including telco-specific protocols.
By harnessing eBPF, 5GC-Observer can monitor container-
based 5GC network functions orchestrated by Kubernetes,
collecting telemetry data in the form of measurements and
logs without modifying network function code. These works
are complementary to Monarch, and can be used to augment
the monitoring data exporters (§III-A) used by Monarch.

KPI computation. Works such as [23] and [24] focus on KPI
computation in 5G networks. Vasilakos et al. [23] proposed
ElasticSDK, a software development kit (SDK) that provides
a range of abstractions tailored specifically for monitoring
tasks. The authors utilized a custom agent deployed on top
of the FlexRAN controller to collect monitoring data and
show that ElasticSDK can seamlessly establish a monitoring
pipeline, where control plane applications access the database,
compute processed values, and seamlessly write back the
results. The paper discusses the need for a northbound API for
monitoring requests but lacks details on implementing filter-
ing and aggregation criteria, particularly concerning network
slices spanning various network segments. Vietch et al. [24]
advocate for the simultaneous consideration of E2E KPIs and
individual performance metrics from the Network Function
Virtualization (NFV) infrastructure to ensure the performance
of 5G network slices. They substantiate their argument by
examining two network slices - one critical and one non-
critical - both residing on the same physical x86 infrastructure
and sharing the same last-level cache (LLC). The authors

4

illustrate how resource contention caused by the non-critical
slice significantly impacts the performance of the critical slice,
despite their separate virtual CPUs. Their findings emphasize
that solely relying on either E2E KPIs or NFV infrastructure
metrics is insufficient for gaining insights into such issues;
rather, both aspects must be jointly considered to derive
meaningful insights.

NWDAF based solutions. Several recent works have focused
on NWDAF solutions within the 5G core network, addressing
the need for advanced analytics capabilities. Garcia et al.
[25] highlights NWDAF’s crucial function in 5G network
automation, focusing on its role in data collection and analytics
exposure. While NWDAF utilizes standardized methods like
the event exposure API for gathering data from 5G core
NFs, it relies on operations, administration and management
(OAM) systems for E2E KPIs. Mekrache et al. [26] present
a microservices-based implementation of NWDAF integrated
with the OpenAirInterface (OAI) 5G core and RAN, demon-
strating its analytic capabilities through the detection of ab-
normal User Equipment (UE) traffic patterns using a Long
Short-Term Memory (LSTM)-based autoencoder. Moreover,
Manias et al. [27] propose a distributed NWDAF architecture
with multiple instances placed at different network regions,
highlighting the concept of central-edge aggregation for mon-
itoring slice-level performance metrics and developing future
forecasts. While existing works highlight various aspects of
NWDAF analytic capabilities within the 5G core network,
Monarch takes a distinct approach by focusing on the critical
aspect of data collection and complementing the NWDAF’s
analytics functions.

Synthesis. The existing literature on 5G network monitoring
demonstrates several limitations related to E2E network slice
monitoring. While several studies have proposed monitoring
architectures (as summarized in Table I) and AI/ML solutions,
they often lack comprehensive support for network slicing and
fail to provide detailed implementations using real-world 5G
testbeds. Some works, such as [14], [15], [19], address slicing
to some extent but lack specifics on slice KPI computation.
Other approaches, such as [9], [20], may not directly apply to
network slicing as they focus on individual NFs. The absence
of a comprehensive solution for E2E network slice monitoring
results in the following limitations:

• Lack of 5G network slice monitoring data: Most of
the existing studies rely on either synthetic data or 4G
data generated by emulating the 4G Evolved Packet
Core (EPC). Alternatively, studies involving 5G networks
lack publicly available implementations of a monitoring
framework capable of easily collecting 5G network slice
monitoring data. This scarcity of genuine 5G monitor-
ing data poses a significant challenge in quantitatively
evaluating any data-driven network automation solutions
related to network slicing and 5G network slice KPIs.

• Lack of quantitative analysis of monitoring cost: Within
the current literature, there is a lack of quantitative
analysis of the trade-off between monitoring data volume
and accuracy, particularly in the context of E2E network
slice KPIs. Assessing the optimal balance between the re-

quired volume of monitoring data and the associated cost
remains a critical aspect yet to be thoroughly explored.

This paper addresses this gap by introducing Monarch, a
scalable monitoring architecture designed for 5G and future
networks, with a particular emphasis on network slice-level
monitoring and KPI computation. We have implemented and
assessed this architecture using a cloud-native 5G testbed,
providing an empirical examination of its effectiveness in
computing 5G network slice KPIs. Moreover, we propose an
adaptive monitoring heuristic aimed at minimizing monitoring
overhead while ensuring accuracy, thereby enhancing cost-
effectiveness. This algorithm is evaluated using a real-world
5G traffic dataset [28].

III. MONARCH DESIGN AND OPERATION

A. Monarch Overview

Monarch is a monitoring architecture for 5G networks,
focusing on E2E network slice monitoring. Figure 2 shows
the architecture overview of Monarch, comprised of several
high-level components, which are described below:
Request Translator. This component implements an abstrac-
tion layer that translates high-level monitoring requests speci-
fied by the monitoring API (§III-B) into low-level monitoring
directives understood by the Monitoring Manager (e.g., which
NF instance to monitor). It communicates with an external
slice orchestrator (e.g., ONAP [29]) to obtain the mapping
between NF instances and slices.
Monitoring Manager. This component is responsible for
converting the monitoring directives into monitoring config-
urations for each network segment, which can be understood
by the network slice segment data collector (NSSDC). The
monitoring manager also implements intelligent algorithms for
monitoring, such as adaptive polling and KPI prediction.
KPI Computation. These components are instantiated per
monitoring request and contain the logic for network slice KPI
computation. They are responsible for querying the data store,
computing KPIs (e.g., by correlating data from different NFs)
and subsequently writing the computed KPIs back to the data
store. They contain the logic necessary for computing network
slice KPIs (e.g., those standardized by the 3GPP [4]) and are
extendable via scripts to support custom KPIs. In this paper,
we present a proof-of-concept implementation of network slice
throughput KPI (§IV).
NSS Data Collector (NSSDC). This component is instantiated
per network slice segment (NSS) and interacts with the NSS
management function (NSSMF) (e.g., service management
and orchestration (SMO) in the RAN and network function
virtualization orchestration (NFVO) in the core) to instantiate
monitoring data exporters (MDEs) specific to that network
slice segment. For an E2E slice comprising various network
slice segments like RAN, edge, and core, each NSSDC in-
stantiates MDEs tailored to the specific configuration needs of
its segment. For instance, in the RAN, MDEs may connect to
xApps, while in the core, they might collect data directly from
5G core NFs. The NSSDC configuration includes details, such
as monitoring frequency and targeted instances of gNBs or
NFs, specifying IP addresses or endpoints for communication.

5

Monitoring
Manager

E2E Slice Manager
/ Service Orchestrator

External Component
5G

 N
etw

ork

Request
Translator

KPI
Computation

KPI
Computation

KPI
Computation

Data
Store

Data
Visualization

Network Slice Segment
Data Collector

Monitoring Data
Exporter

Monitoring
App(s) Monitoring

request
1

2

3

Configure
KPIs

4

Monitoring
directives

Slice
configuration

5 Monitoring configuration

Instantiate MDEs

Write to
data
store

910 Read PM/
write KPI

7

API
Gateway

11

Query
data

Data
Distribution

12

8 Processed
monitoring
data

M
on

arch

Monarch Component

Control & Configuration

Monitoring Data

Monitoring
Data Sources

(e.g., vCU, xApps)

6

Monitoring
data export

Network Slice Segment
Management Function

(e.g., SMO)

Network Slice Segment
Data Collector

Monitoring Data
Exporter

Instantiate MDEs

7

Monitoring
Data Sources

(e.g., VNF)

6

Monitoring
data export

Network Slice Segment
Management Function

(e.g., NFVO)

Network Slice Segment (e.g., RAN) Network Slice Segment (e.g., Core)

Network
Slice

Fig. 2: Conceptual architecture for Monarch

The NSSDC also provides functions, such as short-term local
data persistence, filtering, aggregation, and data transformation
(e.g., enriching the data by adding labels).
Monitoring Data Exporter (MDE). MDEs are lightweight
containers responsible for extracting raw monitoring data from
monitoring data sources (e.g., NF, xApps, etc.), converting
the data into a standardized format (e.g., OpenTelemetry
protocol1), and then exporting them to the NSSDC. MDEs can
extract monitoring data either directly (e.g., by interacting with
the NF instance) or indirectly (e.g., by querying monitoring
xApps in the RAN).
Data Distribution. The data distribution component is re-
sponsible for collecting processed monitoring data from dif-
ferent NSSDCs. It implements horizontal scalability and load-
balancing to handle large volumes of data.
Data Store. The data store component in Monarch is an
abstraction of long-term persistent storage and is responsible
for storing monitoring data as well as configuration data (e.g.,
templates for KPI computation modules).
API Gateway. The API Gateway acts as an intermediary
between the monitoring request and the subsequent access to
monitoring data by facilitating client access to monitoring data
through request IDs. It is responsible for mapping monitoring
request IDs to metrics, ensuring that users can be oblivious to
how metrics are represented and collected in the underlying
system. Authentication and access control mechanisms within
the API Gateway enable multi-tenancy by only allowing
users to retrieve data associated with their specific monitoring
requests.

1https://opentelemetry.io/

Data Visualization. This component presents the monitoring
data in a visual format using interactive dashboards. This
allows users to glean insights by drilling down into specific
data of interest, such as investigating the throughput of a
particular session within a defined slice.

B. Monitoring API

A flexible northbound API for monitoring, which provides
a high-level abstraction to monitoring applications, is essential
for ensuring that the applications can focus on their business
logic. Some existing works, such as [15], propose to leverage
the 3GPP network slice template (NST) for this purpose. How-
ever, we argue that a separate northbound API for monitoring
offers a few advantages:

• Granular Control. The dedicated monitoring API en-
ables precise control over monitoring parameters such
as KPIs and detailed sub-counters. It also allows for
the modification and deletion of monitoring requests
independent of the network slice configuration.

• Separation of Concerns. The monitoring API separates
monitoring functions from network slice management and
allows network administrators to concentrate on monitor-
ing tasks without the complexities of slice creation and
configuration.

• Increased Flexiblity. By not being bound to the NST,
the dedicated monitoring API permits various monitoring
applications to submit distinct monitoring requests for
the same network slice, each with different parameters,
thereby enhancing operational flexibility.

The proposed monitoring API provides a high-level ab-
straction to monitoring applications. The request structure

https://opentelemetry.io/

6

is shown in Fig. 3. To submit a new monitoring request,
clients (i.e., monitoring apps) initiate a POST request to
the /api/monitoring-requests endpoint, providing a JSON
payload describing the monitoring task. Details of a spe-
cific monitoring request can be fetched through a GET re-
quest to /api/monitoring-requests/request id, where request id
uniquely identifies the monitoring request. Once the monitor-
ing request has been submitted, the client can access the mon-
itoring data by sending a GET request to GET/api/metrics?
request id=⟨request id⟩. Fig. 3 shows how the monitoring API
can be used to submit requests for both slice-level and NF-
level KPIs.

C. Flow of a monitoring request

Here we discuss how the different components of Monarch
work together to serve a network slice monitoring request.
Figure 2 shows the flow of a monitoring request (Steps 1–12)
through Monarch, which proceeds as follows:

• Step 1. Monitoring apps (e.g., AI/ML-based slice man-
agement and orchestration applications) specify a high-
level network slice monitoring request through the mon-
itoring request API (cf., §III-B) and receive a request id.

• Step 2. The Request Translator communicates with an
external slice orchestrator to gather information about
slice configuration. This includes information such as
network slice instances and their associated virtual NFs
and virtual links.

• Step 3. The Request Translator parses the monitoring
request and transforms it into monitoring directives un-
derstood by the monitoring manager (e.g., which NF
instances to monitor). For example, a monitoring request
for network slice throughput KPI would be converted
to monitoring directives for the associated session man-
agement function (SMF) and user plane function (UPF)
instance(s) associated with that slice.

• Step 4. The Monitoring Manager instantiates the slice
KPI computation component for the submitted monitor-
ing request, using predefined logic for computing the
specified KPI.

• Step 5. The monitoring manager translates the monitoring
directives into monitoring configuration understood by
the NSSDCs.

• Step 6: The corresponding NSSDC instantiates MDEs
using the interfaces provided by the NSSMF, configuring
them with the appropriate parameters for the monitoring
data source, such as connection information and monitor-
ing frequency.

• Step 7: The MDEs collect monitoring data at the specified
frequency, transform them into a uniform format, and
subsequently export the data to the NSSDC.

• Step 8: The NSSDCs perform their respective operations
such as filtering, aggregation, and data transformation
and subsequently relay the processed data to the Data
Distribution component.

• Step 9: The data is written to the data store. This may
involve adding monitoring data to a time-series database,
as well as archiving it in long-term storage solutions, such
as object storage.

• Step 10: The KPI computation component (instantiated
in Step 4) reads the monitoring data from the data store,
performs the KPI computation, and subsequently saves
the computed KPIs in the data store.

• Step 11 and Step 12: The client queries the monitoring
data through the API Gateway, using the request IDs
generated in Step 1.

D. Monitoring algorithms

Fixed high-granularity monitoring across all slices can lead
to excessive use of network resources (i.e., overhead) and
produce redundant (i.e., unnecessary) data. Therefore, network
slice monitoring should be cost-effective in minimizing mon-
itoring overhead while maximizing monitoring accuracy. To
address this challenge, Monarch supports adaptive monitoring
algorithms, that can dynamically adjust monitoring parameters
to optimize resource usage and enhance the efficiency of net-
work slice monitoring processes. Monarch facilitates adaptive
monitoring by adopting the sidecar pattern [30] for MDEs,
allowing dynamic configuration of monitoring intervals per
NF. The Monitoring manager can choose from a catalog of
different adaptive monitoring algorithms. For example, for a
critical network slice, an algorithm focused on optimizing
accuracy may be chosen, while for non-critical slices, an
algorithm prioritizing network overhead could be beneficial.

The placement of adaptive monitoring algorithms within the
Monarch architecture depends on several factors, including the
nature of the algorithms, the data sources they require, and
the specific monitoring requirements of the network slices.
Placing adaptive monitoring algorithms within the Monitoring
manager allows for centralized control and coordination of
adaptive monitoring strategies across the entire network. Al-
ternatively, adaptive monitoring algorithms can be deployed
within NSSDCs or MDEs, closer to the data sources. This
approach leverages the proximity to raw monitoring data,
enabling the algorithms to perform real-time analysis and
generate adaptive monitoring decisions based on local observa-
tions. To demonstrate the adaptive monitoring capabilities of
Monarch, we propose a heuristic-based adaptive monitoring
algorithm (§IV, Algorithm 1). It is worth noting that while
Algorithm 1 represents a simple heuristic, Monarch is not
limited to this particular approach. Monarch is designed to
accommodate a variety of monitoring algorithms, including
more advanced ones based on AI/ML techniques.

IV. PROOF-OF-CONCEPT IMPLEMENTATION AND
USE-CASES

Hardware. Our testbed setup, depicted in Figure 4, comprises
two distinct 2-node Kubernetes clusters: one designated for
the 5G network implementation and the other for Monarch
deployment. The first cluster, dedicated to hosting the 5G
network components, consists of two Intel NUC PCs equipped
with Intel i7-6770HQ processors (4 cores) clocked at 2.600
GHz, each paired with 16GB of RAM. These nodes run Linux
v5.15 and accommodate the NSSDC component of Monarch.
Conversely, all remaining Monarch components are deployed
on the second Kubernetes cluster, featuring Intel Xeon servers
(E3-1230 v3) with 8 cores running at 3.7GHz, with 16GB

/api/monitoring-requests
/api/monitoring-requests/request_id
GET /api/metrics?request_id=<request_id>
GET /api/metrics?request_id=<request_id>

7

{
"api_version": "1.0",
"request_description": "Monitoring

request for slice throughput",↪→

"scope": {
"scope_type": "slice",
"scope_id": "NSI01"

},
"kpi": {

"kpi_name": "slice_throughput",
"kpi_description": "Throughput of

the network slice",↪→

"sub_counter": {
"sub_counter_type": "SNSSAI",
"sub_counter_ids": ["1-000001",

"2-000002"]↪→

},
"units": "Mbps"

},
"duration": {

"start_time":
"2023-12-01T00:00:00Z",↪→

"end_time": "2023-12-01T00:05:00Z"
},
"monitoring_interval": {

"adaptive": true,
"interval_seconds": 1

}
}

(a) Monitoring request for slice-level KPI

{
"api_version": "1.0",
"request_description": "Monitoring

request for the number of QoS
flows",

↪→

↪→

"scope": {
"scope_type": "nf",
"scope_id": "SMF01"

},
"kpi": {

"kpi_name": "smf.num_qos_flows",
"kpi_description": "Number of QoS

flows at the SMF",↪→

"sub_counter": {
"sub_counter_type": "5QI",
"sub_counter_ids": ["1", "6"]

},
"units": "count"

},
"duration": {

"start_time":
"2023-12-01T00:00:00Z",↪→

"end_time": "2023-12-01T00:30:00Z"
},
"monitoring_interval": {

"adaptive": false,
"interval_seconds": 5

}
}

(b) Monitoring request for NF-level KPI

Fig. 3: Structure of a monitoring request

Servers (RAN, Edge, Core)SDRs

Transport (L2 Switch)
UE

Fig. 4: Testbed infrastructure showing (from bottom left,
clockwise): a) User Equipments (UEs) b) Software Define Ra-
dios (SDRs) connected to gNB, c) servers hosting 5G NFs, and
d) transport network interconnecting different components.

of RAM. For the gNB implementation, we use srsRAN [31]
deployed on an Intel Core i9-10980XE 3.0GHz PC running
Ubuntu OS 22.04 with a low latency kernel. The gNB is
directly connected to a Software Defined Radio (SDR) unit
(USRP X310), and we utilize a Google Pixel 7 Pro as the
User Equipment (UE) device.

5G network. Our 5G mobile core is based on Open5GS [18],
an open-source implementation of 3GPP R16. The 5G NFs,
e.g., SMF and UPF are containerized and deployed on a Kuber-

netes cluster. We employ a software-defined VXLAN overlay
utilizing OpenVSwitch (OvS) on the underlying physical sub-
strate network to establish the transport network infrastructure.
The integration of the 5G NFs with this transport overlay was
accomplished via the OvS CNI plugin. The RAN segment is
implemented using srsRAN [31], with the Google Pixel 7 Pro
serving as our UE. To accommodate experiments necessitating
multiple slices (more than two), we utilize UERANSIM [32],
an open-source gNB and UE simulator, due to hardware
limitations. Our experiments include two scenarios: i) using
the UERANSIM simulator to demonstrate the efficiency and
scalability of Monarch ii) utilizing real UEs and SDRs to
replay real-world traffic traces, ensuring realistic results for
adaptive monitoring evaluations. We have made the source
code for deploying the network slicing testbed publicly ac-
cessible via our GitHub repository open5gs-k8s [33]. This
repository includes scripts for setting up the Kubernetes cluster
with requisite plugins, configuring multiple network slices, and
custom versions of the Open5GS SMF and UPF NFs, offering
per-slice metrics.

Monarch implementation. All Monarch components are in-
stantiated as containers on a Kubernetes cluster, with the
MDEs instantiated as sidecar containers inside Kubernetes
pods. Figure 5 presents a logical diagram illustrating the inter-
action between the 5G testbed and Monarch, with a focus on
monitoring data collection and control across various network
segments. The diagram highlights two distinct network slices

8

Network Slice Management
and Orchestration

NSSDC

Monarch Core
Components

5G Testbed Monarch Control Monitoring

UPF SMFMDE MDE

UPF

SMF MDE

NSSDC

Slice 1
(URLLC)

Slice 2
(eMBB)

gNodeB

MDE

MDE

NSSDCRAN Edge Core

Central Cloud

Shared NFs
(e.g., AMF, PCF)

Fig. 5: Logical diagram showing the integration of Monarch
with the 5G testbed, highlighting the flow of monitoring data
and control messages between components

(Slice 1 and Slice 2) that traverse different segments, including
the RAN, Edge, and Core. It demonstrates how Monarch
components, such as Monitoring Data Exporters (MDEs),
interface with key 5G network elements like gNodeB, UPF,
and SMF within each slice. Table II presents an overview of
how different components of Monarch are implemented. The
container images, manifest files, and source code used for the
implementation are publicly available on our GitHub reposi-
tory 5g-monarch [16]. The adaptive monitoring algorithm
is incorporated into the MDE.

TABLE II: Implementation of Monarch components

Component Implementation
Monitoring manager Kubernetes API (v1.28.1)
KPI calculator Python-based implementation
NSSDC Prometheus (v2.47.0)
MDE Exporters based on Prometheus and Open-

Telemetry SDK
Data distribution Thanos (v0.31.0)
Data store Prometheus time-series database and Minio S3

object storage
API gateway Python-based implementation leveraging

Thanos Query API
Data visualization Grafana

Use-cases. We illustrate Monarch’s role in 5G network mon-
itoring by showcasing two scenarios: monitoring KPIs at the
slice and network function levels (for evaluation, see §V).

• Monitoring network slice KPI: We use Monarch to mon-
itor the throughput of a network slice instance (cf., [4],
Section 6.3.2, 6.3.3). The throughput of a network slice
instance is determined by computing the packet size
for each successfully transmitted IP packet through the
network slice instance during each observation granular-
ity period. This demonstrates the ability of Monarch to
monitor KPIs at the slice level. Figure 3a shows the as-
sociated monitoring request, where we define the scope
as slice, and establish per-slice aggregation by specifying
the sub_counter of the kpi as SNSSAI. To compute

the throughput of the network slice instance, Monarch
aggregates the transmitted and received bytes for every
PDU session associated with each UPF instance in the
slice. This requires correlating information from both the
SMF and UPF. To achieve this, Monarch instantiates two
MDEs alongside the SMF and UPF, using the Kubernetes
API. The MDE for SMF collects information about the
mapping between slices and their active PDU sessions,
while the MDE for UPF exports information about the
bytes transmitted and received for each PDU session,
properly labeled with information such as the originating
UPF instance, direction (uplink/downlink), and network
segment. The slice-specific KPI computation module then
queries the data store to collect information about the
slice and the number of bytes received and transmitted per
active PDU session. It filters the list of PDUs for a given
slice using S-NSSAI to PDU session mapping and aggre-
gates the received and transmitted bytes for these filtered
PDU sessions to calculate slice throughput. Monarch’s
ability to label metrics by direction and per PDU session
provides flexibility for monitoring applications.

• Monitoring network function KPI: We use Monarch to
monitor the number of QoS flows from the SMF (cf.,
[34], Section 5.3.2). In 5G, a QoS flow represents the
most granular level of QoS distinction within a ses-
sion. This underscores Monarch’s capability to monitor
KPIs at the NF level. Figure 3 shows the associated
monitoring request, where we define the scope as NF,
and establish per-qos-flow aggregation by specifying the
sub_counter of the kpi as 5QI. This KPI is collected
from the measurements exposed by the SMF. Note that
we can specify a particular instance(s) of SMF by spec-
ifying one or more items in the scope_id field.

Adaptive monitoring. To exemplify the adaptive moni-
toring capabilities of Monarch, we propose a heuristic-based
adaptive monitoring algorithm (Algorithm 1). We implement
our adaptive monitoring heuristic by integrating it with our
MDEs. The MDEs are implemented as Prometheus exporters
responsible for pushing data to Prometheus remote write
endpoints. This integration allows us to embed the monitoring
algorithm directly within the MDEs, leveraging their proximity
to the data source. We opt for this approach because the
pull model of Prometheus does not support real-time on-
the-fly adjustment of monitoring granularity. Integrating the
heuristic within the MDEs enables the dynamic configuration
of adaptive monitoring intervals, ensuring efficient resource
usage and timely response to network dynamics.

Algorithm 1 operates on an input time series x(t) (rep-
resenting a monitored KPI (§IV)) and adapts its monitoring
frequency to capture significant changes while minimizing
resource usage. The algorithm maintains a sampling interval
T , which determines how often data points are sampled from
the time series. At each time step t, the algorithm evaluates
whether it is appropriate to sample the data based on the
current sampling interval and the observed changes in the time
series. At each time step, the algorithm decides whether to
sample the data based on two criteria — a) time to sample: it

9

Algorithm 1 Adaptive Monitoring Algorithm

Inputs: x(t): original time series, δ: threshold for significant
change, T : sampling interval, Tmin: minimum sampling
interval, Tmax: maximum sampling interval, α: sampling
interval increase factor, β: sampling interval decrease
factor.

Output: : xs(t) : Sampled time series
1: Initialize:
2: T ← Tmin

3: function SAMPLE(τt, x(t))
4: if t = 1 then
5: xs(t)← x(t) ▷ Sample the time series
6: else
7: T ← UPDATE SAMPLING INTERVAL(x(t))
8: if TIME TO SAMPLE(τt, T) then
9: xs(t)← x(t) ▷ Sample the time series

10: function TIME TO SAMPLE(τt, T)
11: ∆t = τt − τt−1

12: if ∆t ≥ T then
13: return True
14: return False
15: function SIGNIFICANT CHANGE(x(t))
16: ∆x = |x(t)− xs(t− 1)|
17: if ∆x > δ then
18: return True
19: return False
20: function UPDATE SAMPLING INTERVAL(x(t))
21: if SIGNIFICANT CHANGE(x(t)) then
22: T ← max(Tmin, T/β)
23: else
24: T ← min(Tmax, T ∗ α)
25: return T
26: for each timestep τt = 1, 2, · · · do
27: SAMPLE(τt, xt)

checks if the time elapsed since the last sample exceeds the
current sampling interval T (lines 10-14), and b) significant
change: it examines whether the observed change in the
time series exceeds a predefined threshold δ (lines 15-19).
The algorithm adjusts the sampling interval depending on
whether a significant change is detected. If a significant change
is detected, the sampling interval is reduced by dividing it
by a factor β to capture detailed variations. Conversely, if
no significant change is observed, the sampling interval is
increased by multiplying it by a factor α to reduce resource
consumption.

V. PERFORMANCE EVALUATION

In this section, we present the evaluation results for
Monarch, highlighting its performance across various aspects.
Specifically, our findings illustrate Monarch’s ability to effi-
ciently scale its resource usage with the increasing number
of slices (§V-B), its negligible impact on latency even with an
increasing number of slices (§V-B), and the effectiveness of its
adaptive monitoring mechanism in striking a balance between
monitoring accuracy and overhead (§V-C).

A. Experimental Setup

Network slicing scenario. We create multiple network slices,
ranging from 1 to 50, with each slice having a separate SMF
and UPF, with all other 5G NFs common across all slices. We
chose to configure network slices with individual SMF and
UPF instances to customize resource allocation and monitoring
for each slice while sharing other 5G NFs for resource
efficiency and operational ease. Each slice accommodates
one connected UE generating random traffic, except during
adaptive monitoring experiments where traffic is replayed from
the real-world 5G dataset. Leveraging Monarch, we gather the
network slice monitoring data to compute network slice KPIs,
as outlined in §IV. Each scenario is repeated 10 times to ensure
robustness, and the average results are presented for analysis.

Dataset. To simulate real-world conditions, we utilize traf-
fic traces sourced from a 5G dataset [28] obtained from
a prominent mobile operator in South Korea. These traces
encompass diverse 5G applications, such as cloud gaming and
live streaming. By leveraging our 5G network testbed, which
includes Pixel UEs and SDRs, we replay these traffic traces
and employ Monarch to monitor the network slice KPIs. The
efficacy of the adaptive monitoring algorithm is thoroughly
evaluated against these realistic traffic patterns and KPIs.

B. System Performance

Performance Metrics. We use the following performance
metrics to evaluate the system performance of Monarch:

• Resource usage: The CPU and memory usage of differ-
ent components of Monarch. We leverage CPU metrics
exposed by cAdvisor integrated with Kubernetes to cal-
culate CPU usage, given in millicores.

• Monitoring overhead: The amount of Monarch-
generated network traffic (bytes/sec) to accomplish its
monitoring tasks.

• Ingestion time: The time (in ms) to collect mon-
itoring data from the NFs, given by Prometheus
scrape_duration metric.

To assess the performance of Monarch, we conducted
evaluations to measure the impact of the number of slices
and the monitoring interval on the Monarch’s resource usage.
Specifically, we varied the number of slices (from 1 to 50)
and monitoring interval (from 1s to 10s) and used a separate
instance of Prometheus serving as a meta-monitor to observe
the resource usage patterns exhibited by various components
of Monarch.
CPU usage. Figure 6a shows the CPU usage of Monarch with
the number of slices in the network varying from 1 to 50, and
monitoring intervals set at 1s, 5s, and 10s. The CPU usage of
Monarch is directly correlated with the volume of monitoring
data collected, which increases linearly with the number of
slices. Consequently, given factors, such as monitoring interval
and metric cardinality, remain constant, the CPU usage of
Monarch grows linearly as the number of slices increases.
Specifically, when scaling the number of slices 50× from 1
to 50, we observe a 8.5×, 9×, 8.9× increase in CPU usage,
for monitoring intervals of 1s, 5s and 10s, respectively.

10

1 10 20 30 40 50

Number of slices

200

400

600

800

1000

1200

1400

C
P

U
U

sa
g
e

(m
il
li
co

re
s)

1s 5s 10s

(a) CPU usage vs. slices

0

500

1000

1500
Monitoring interval: 1s

0

500

1000

1500
Monitoring interval: 5s

1 10 20 30 40 50
0

500

1000

1500
Monitoring interval: 10s

NSSDC Monarch

Number of slices

C
P

U
U

sa
ge

(m
il
li
co

re
s)

(b) CPU usage of NSSDC

1 10 20 30 40 50

Number of slices

950

960

970

980

990

1000

1010

1020

1030

M
em

o
ry

U
sa

g
e

(M
B

)

1s 5s 10s

(c) Memory usage vs. slices

102

103

104

Monitoring interval: 1s

102

103

104

Monitoring interval: 5s

1 10 20 30 40 50

102

103

104

Monitoring interval: 10s

NSSDC Monarch

Number of slices

M
em

or
y

U
sa

ge
(M

B
)

(d) Memory usage of NSSDC

0

5

10
Monitoring interval: 1s

0

1

2
Monitoring interval: 5s

1 10 20 30 40 50
0

1

2
Monitoring interval: 10s

MDE Monarch

Number of slices

M
on

it
or

in
g

ov
er

h
ea

d
(K

b
p

s)

(e) Monitoring overhead vs. slices

2.00

2.25

2.50

2.75
Monitoring interval: 1s

2.00

2.25

2.50

2.75
Monitoring interval: 5s

1 10 20 30 40 50
2.00

2.25

2.50

2.75
Monitoring interval: 10s

Number of slices

In
ge

st
io

n
ti

m
e

(m
s)

Monarch

(f) Ingestion time vs. slices

Fig. 6: Monarch system performance

Figure 6b shows the CPU usage of the NSSDC component
of Monarch. Given its role in data collection, the resource
usage of this component is susceptible to change with both
the number of slices and the monitoring interval. Notably,
our analysis indicates that when there are 50 slices in the
network, NSSDC contributes to 66%, 52%, and 50% of the
total CPU usage of Monarch at monitoring intervals of 1s, 5s,
and 10s, respectively. Moreover, we observe a proportional
increase in the share of total CPU usage attributed to NSSDC
as the number of slices increases.

Memory usage. Figure 6c shows the memory usage of
Monarch with the number of slices in the network varying
from 1 to 50, and monitoring intervals set at 1s, 5s, and 10s.
In general, we observe as similar trend as CPU usage, where
the memory usage of Monarch grows linearly as the number of

slices increases; however, the increase is not very significant.
Specifically, Specifically, when scaling the number of slices
by 50× from 1 to 50, we note a marginal 1.04×, 1.05×, and
1.05× increase in memory usage for monitoring intervals of
1s, 5s, and 10s, respectively.

Figure 6d shows the memory usage of the NSSDC compo-
nent of Monarch, relative to the total memory usage. Unlike
CPU usage, NSSDC’s contribution to total memory usage is
minor, with other components such as the data store occupying
a larger share. Furthermore, our analysis reveals no significant
augmentation in memory usage under lower monitoring inter-
vals (higher frequency). This is because memory consumption
is contingent upon the total number of data points collected
before being flushed to disk, rather than the rate at which data
is collected.

11

Monitoring overhead. Figure 6e shows the monitoring over-
head of Monarch with the number of slices in the network
varying from 1 to 50, and monitoring intervals set at 1s,
5s, and 10s. We observe that monitoring overhead increases
linearly with the number of slices. This is expected since we
are collecting per-slice metrics. Specifically, when scaling the
number of slices by 50× from 1 to 50, we note 3.2×, 2.92×,
and 2.6× increase in memory usage for monitoring intervals
of 1s, 5s, and 10s, respectively.

Additionally, our analysis reveals the substantial impact of
monitoring intervals on monitoring overhead, with monitoring
intervals of 1s and 5s exhibiting 23× and 4.86× the overhead
of the 10s interval, respectively, with 50 slices in the network.
Further, we examine the contribution of MDEs relative to the
total overhead. We define the MDE contribution to the total
overhead as the volume of data (bytes/sec) used by the MDEs
to collect raw monitoring data from the data sources. With
50 slices in the network, MDE overhead accounts for 69%,
66%, and 61% of the total overhead for monitoring intervals
of 1s, 5s, and 10s, respectively. These findings underscore
the importance of selecting appropriate monitoring intervals
to balance the trade-off between monitoring granularity and
resource utilization.

Ingestion time. Next, we examine the ingestion time of
Monarch, shown in Figure 6f. We observe minimal impact
on ingestion time regardless of the monitoring interval or
the number of slices, maintaining a consistent range between
2.25 to 2.75 ms. This consistency suggests Monarch’s robust
scalability with an increase in the number of slices, without in-
troducing notable delays. However, we also find that while the
monitoring interval does not significantly affect the ingestion
time, it significantly impacts the accuracy of the monitoring
results. In terms of fixed frequency monitoring, we find that
a monitoring interval of 5s offers a good trade-off between
monitoring overhead and accuracy. We examine this further in
§V-C.

Factors affecting ingestion time. To explore the factors
affecting ingestion time, we utilized Avalanche [35], a load-
testing tool for Prometheus-compatible systems. Our inves-
tigation aimed to understand the impact of factors such as
the number of time series and endpoints on ingestion time.
Metrics, representing observable properties with defined di-
mensions (labels), generate multiple time series based on label
variations. In the context of 5G network monitoring, metrics
encompass various NF performance indicators, such as packet
volume on the N3 interface of the UPF, with labels including
annotations such as NF instance and network slice ID.

Figure 7a illustrates how the ingestion time changes with the
number of monitored time series from a single endpoint. Here,
an endpoint refers to a uniform resource locator (URL) that
specifies the location of a resource (metric(s) to be monitored).
We observe a gradual increase in ingestion time until it sharply
escalates beyond a threshold (1000 time series), indicating de-
graded system performance. To assess the impact of endpoint
numbers on ingestion time, Figure 7b explores the scenario
with 104 time series being monitored. As the number of
endpoints increases, ingestion time logarithmically decreases

and stabilizes. This observation underscores the suboptimal
practice of relying on a single endpoint for extensive data
collection. In Monarch, this issue is mitigated by employing
separate MDEs for each NF, thus averting the overload of a
single endpoint by excessive metric collection tasks.

Further, we explore the number of time series monitored by
Monarch, encompassing data collected for E2E KPI computa-
tion and self-monitoring for resource utilization. As depicted
in Figure 7c, with 50 slices deployed in the network, Monarch
monitors a total of 2934 time series. Notably, this number
of time series is not aggregated from a single endpoint but
distributed across multiple endpoints, highlighting Monarch’s
distributed data collection strategy for enhanced scalability and
efficiency.

C. Fixed vs. Adaptive Monitoring

Finally, we assess the effectiveness of Monarch’s adaptive
monitoring mechanism, as detailed in §III-D. For our evalua-
tion, we leveraged real-world 5G traffic traces sourced from a
dataset [28], replayed via Pixel UEs through our testbed, and
employed Monarch to compute E2E slice KPIs, as outlined
in §IV. The experiment duration spanned three hours, with
the results tabulated in Table III. However, for clarity, Figure
8 provides a snapshot of 300 seconds during the experiment
period.

TABLE III: Evaluation of adaptive monitoring

Interval MAE MAPE DSR EU
5s 0.0301 0.2351 0.80 3.4027
10s 0.0760 0.5899 0.90 1.5257
Adaptive 0.0232 0.1742 0.76 4.3444

Table III shows several metrics including the mean absolute
error (MAE), mean absolute percentage error (MAPE), data
savings ratio (DSR), and expected utility (EU) for different
monitoring strategies (fixed 5s/10s and adaptive). The DSR
represents the reduction in monitoring overhead by monitoring
data points at intervals relative to the base interval of 1s. We
choose 1s as the lowest granularity due to system performance
constraints in Prometheus at intervals below this threshold. In
Figure 8, the term “original” denotes the time series monitored
at the base interval of 1s. Additionally, we introduce the
EU metric to assess the accuracy-overhead trade-off. EU is
calculated as the DSR divided by the MAPE, where higher
values indicate better performance. Notably, fixed-frequency
monitoring at a 10s interval exhibits the best DSR, yet the
proposed adaptive monitoring outperforms both 5s and 10s
intervals in terms of EU.

Figure 8 illustrates a time series plot of network slice
throughput KPI during our experiment, showcasing different
monitoring intervals of 5s, 10s, and adaptive. Notably, the
adaptive monitoring approach dynamically adjusts intervals
according to traffic variations, effectively capturing sudden
changes by reducing the interval and minimizing overhead dur-
ing stable periods by increasing the interval. From the zoomed-
in section in Figure 8 (top), we can see that the adaptive
monitoring scheme captures more data points (compared to
fixed-frequency monitoring) during the sharp dip in throughput

12

100 101 102 103 104

Number of time series

0

20

40

60
In

ge
st

io
n

T
im

e
(m

s) # endpoints: 1

(a) Ingestion time vs. time series

2 4 6 8 10

Number of endpoints

10

20

30

40

In
ge

st
io

n
T

im
e

(m
s) # time series: 10000

(b) Ingestion time vs. endpoints

1 10 20 30 40 50

Number of slices

0

500

1000

1500

2000

2500

N
u

m
b

er
of

ti
m

e
se

ri
es

(c) Time series vs. slices

Fig. 7: Factors affecting ingestion time

10

15

T
h

ro
u

gh
p

u
t

(M
b

p
s)

0 100 200 300

Time (seconds)

0.00

0.15

0.30

0.45

A
b

so
lu

te
E

rr
o
r

80 100 120

8

9

original

5s sampling

(a) 5s sampling

10

15

0 100 200 300

Time (seconds)

0.00

0.15

0.30

0.45

80 90 100 110 120

8

9

original

10s sampling

(b) 10s sampling

10

15

0 100 200 300

Time (seconds)

0.00

0.15

0.30

0.45

80 90 100 110 120

8

9
original

adaptive
sampling

(c) adaptive sampling

Fig. 8: Time series plot showing a) throughput at different monitoring intervals (top) and absolute error (bottom)

around the 80s mark and less data points during the relatively
stable period from 100s to 200s. The bottom sub-figures
display the corresponding absolute error values (compared
to the baseline), highlighting the superior performance of
adaptive monitoring in error reduction over fixed-frequency
schemes.

VI. DISCUSSIONS

Insights from Monarch. Monarch is a scalable monitoring
architecture designed for cloud-native 5G deployments, focus-
ing on E2E network slice KPIs. We discuss below a few key
insights from Monarch:

• Monarch scales well with the number of slices and
supports monitoring up to 50 network slices within a
modest 2-node cluster deployment.

• While a notable portion of Monarch’s CPU usage is at-
tributed to the NSSDC component, we observe improved
performance with higher monitoring intervals. This sug-
gests potential benefits in employing adaptive monitoring
strategies. Further, the inherently cloud-native design
of Monarch facilitates horizontal scaling of NSSDC

instances, offering a solution for managing increased
computational demands.

• Ingestion time within Monarch is notably influenced
by the number of endpoints, suggesting a best practice
of horizontally scaling slices. For example, deploying
separate instances of UPF for different slices can mitigate
potential issues related to a large number of metrics
generated from a single endpoint, thereby reducing mon-
itoring delays.

NWDAF and Monarch synergy. NWDAF [3] is a funda-
mental function of the 5G core network, focused on network
data collection and analytics, both essential for automated net-
work management. On the other hand, Monarch is a scalable
monitoring architecture designed specifically for cloud-native
5G network deployments. It gathers performance metrics from
various network segments, providing a more comprehensive
view of the E2E network slices. While NWDAF and Monarch
serve distinct purposes, they can harmoniously collaborate to
enhance 5G network slice monitoring. This collaboration can
be understood in terms of the following aspects:

• Enhanced Monitoring Scope. While 3GPP provides stan-

13

dardized interfaces for NWDAF to collect data from
3GPP core NFs and application functions, it primarily
focuses on the core network. This leaves out critical
segments such as the transport and the RAN, which are
also part of an E2E slice. Monarch addresses this gap
by extending the monitoring scope to various network
segments for E2E slice monitoring.

• Enhanced scalability. Recent works have proposed a hier-
archical NWDAF architecture, where a central NWDAF
aggregates data and insights from various edge NWDAFs.
In a distributed NWDAF setup, efficient communication
between the edge and central NWDAF is paramount,
especially for data collection. Monarch aligns with this
approach through its network slice segment data collector
(NSSDC) component (§III-A), which is similar to the
multiple instances of NWDAF deployed across various
areas or regions as per 3GPP Release 17. Furthermore,
Monarch includes algorithms for efficiently determining
monitoring granularity, enhancing the scalability of mon-
itoring (§III-D).

A combined deployment where Monarch and NWDAF work
in synergy can significantly enhance 5G network slice mon-
itoring. The architecture would involve Monarch collecting
detailed performance metrics across all network segments,
including those not covered by NWDAF, and NWDAF uti-
lizing this data to provide aggregated insights and predictive
analytics for network management.

Other use-cases for Monarch. Monarch is primarily designed
to aggregate 5G performance metrics and compute E2E slice
KPIs. As detailed in Section IV, Monarch can compute KPIs
at both the NF and slice levels. However, Monarch’s data
collection relies on MDEs to gather monitoring data from
sources that expose such data. Existing works like 5GC-
Observer [22] and Janus [21] have showcased methods for
extracting various 5G-specific metrics from the core and the
RAN, respectively. Our future exploration includes integrat-
ing these approaches with Monarch’s MDEs to broaden the
spectrum of collected 5G metrics, thereby enabling diverse
use cases. Additionally, for the RAN, we intend to utilize
the ORAN RAN Intelligent Controller (RIC) to capture RAN-
specific metrics using xApps.

Request translation. Presently, Monarch’s implementation of
the request translation module is limited, as it relies on manual
processes. This limitation arises from the absence of readily
available open-source E2E slice orchestrators. Looking ahead,
we aim to explore automated translation methods for high-
level monitoring requests and evaluate the potential of plat-
forms like ONAP [29] for E2E slice orchestration capabilities.

VII. CONCLUSION

In this work, we present Monarch, a scalable monitoring ar-
chitecture designed to provide E2E visibility of network slices
and facilitate per-slice KPI computation. Monarch addresses
several critical challenges associated with monitoring network
slices in 5G and beyond networks such as scalability and E2E
KPI computation. Through a proof-of-concept implementation
of Monarch on a 5G network slice testbed, we demonstrated

Monarch’s ability to effectively monitor a wide range of
network slices, accommodating up to 50 slices with consistent
ingestion times, assuming each slice has a dedicated UPF.
Further, our evaluations highlight the efficacy of Monarch’s
adaptive monitoring mechanism, which significantly reduces
monitoring overhead while maintaining accuracy. Moving for-
ward, we aim to improve the capabilities of Monarch towards
addressing monitoring requirements in a dynamic network
environment, particularly in automating request translation and
integrating it with emerging slice orchestration platforms.

ACKNOWLEDGEMENTS

This work was supported in part by Rogers Communica-
tions Canada Inc. and in part by a Mitacs Accelerate Grant.
We thank Amr Abouelkhair for his assistance in integrating
Monarch with Open5GS.

REFERENCES

[1] R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury, N. Saha,
and A. James, “Ai-driven closed-loop automation in 5g and beyond
mobile networks,” in Proceedings of the ACM SIGCOMM FlexNets
Workshop. Association for Computing Machinery, 2021, pp. 1–6.

[2] ETSI, “Zero-touch network and Service Management (ZSM); Closed-
Loop Automation; Part 3: Advanced topics,” ETSI, Group Report (GR)
ZSM 009-3, 08 2023, version 1.1.1.

[3] 3GPP, “5G System; Network Data Analytics Services; Stage 3,” 3GPP,
Technical Specification (TS) 29.520, 09 2023, version 17.12.0.

[4] 3GPP, “Management and Orchestration; 5G end to end Key Performance
Indicators (KPI),” 3GPP, Technical Specification (TS) 28.554, 09 2020,
version 17.0.0.

[5] OpenStack. (2021) Ceilometer project. [Online]. Available: https:
//docs.openstack.org/ceilometer/latest/

[6] (2021) Nagios. [Online]. Available: https://www.nagios.org/
[7] Ericsson. (2020) 5G RAN Slicing. [Online]. Available: https://www.

ericsson.com/491c28/assets/global/eridoc/755404/09004cffc64e902f.pdf
[8] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and

K. Kontovasilis, “FlexRAN: A Flexible and Programmable Platform
for Software-Defined Radio Access Networks,” in Proc. of the
ACM CoNEXT, 2016, p. 427–441. [Online]. Available: https:
//doi.org/10.1145/2999572.2999599

[9] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “Z-TORCH:
An Automated NFV Orchestration and Monitoring Solution,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp.
1292–1306, Dec. 2018.

[10] A. Plascinskas, X. Foukas, and M. K. Marina, “Towards Efficient and
Adaptable Monitoring of Softwarized Mobile Networks,” in Proc. of
the IEEE/IFIP Network Operations and Management Symposium, Apr.
2020, pp. 1–6.

[11] W. Rafique, J. Barai, A. O. Fapojuwo, and D. Krishnamurthy, “A
survey on beyond 5g network slicing for smart cities applications,” IEEE
Communications Surveys & Tutorials, pp. 1–1, 2024.

[12] R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs,
“A monitoring framework for multi-site 5G platforms,” in Proc. of the
European Conference on Networks and Communications (EuCNC), Jun.
2020, pp. 52–56.

[13] D. Giannopoulos, P. Papaioannou, L. Ntzogani, C. Tranoris, and S. De-
nazis, “A holistic approach for 5G Network Slice Monitoring,” in 2021
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), Sep. 2021, pp. 240–245.

[14] A. Beltrami, P. D. Maciel, F. Tusa, C. Cesila, C. Rothenberg,
R. Pasquini, and F. L. Verdi, “Design and implementation of an
elastic monitoring architecture for cloud network slices,” in Proc. of
the IEEE/IFIP Network Operations and Management Symposium, Apr.
2020, pp. 1–7.

[15] M. Mekki, S. Arora, and A. Ksentini, “A Scalable Monitoring Frame-
work for Network Slicing in 5G and Beyond Mobile Networks,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2021.

[16] 5G-Monarch repository on Github. [Online]. Available: https://github.
com/niloysh/5g-monarch

https://docs.openstack.org/ceilometer/latest/
https://docs.openstack.org/ceilometer/latest/
https://www.nagios.org/
https://www.ericsson.com/491c28/assets/global/eridoc/755404/09004cffc64e902f.pdf
https://www.ericsson.com/491c28/assets/global/eridoc/755404/09004cffc64e902f.pdf
https://doi.org/10.1145/2999572.2999599
https://doi.org/10.1145/2999572.2999599
https://github.com/niloysh/5g-monarch
https://github.com/niloysh/5g-monarch

14

[17] N. Saha, N. Shahriar, R. Boutaba, and A. Saleh, “Monarch: Network
slice monitoring architecture for cloud native 5g deployments,” in
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2023, pp. 1–7.

[18] Open5GS. (2024) Open5GS github. [Online]. Available: https:
//github.com/open5gs/open5gs

[19] M. Xie, Q. Zhang, A. J. Gonzalez, P. Grønsund, P. Palacharla,
and T. Ikeuchi, “Service Assurance in 5G Networks: A
Study of Joint Monitoring and Analytics,” in Proc. of the
IEEE Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Sep. 2019, pp. 1–7.

[20] A. Plascinskas, X. Foukas, and M. K. Marina, “Towards Efficient and
Adaptable Monitoring of Softwarized Mobile Networks,” in Proc. of
the IEEE/IFIP Network Operations and Management Symposium, Apr.
2020, pp. 1–6.

[21] X. Foukas, B. Radunovic, M. Balkwill, and Z. Lai, “Taking 5G RAN
Analytics and Control to a New Level,” in Proc. of the ACM MobiCom.
ACM, 2023.

[22] A. Khichane, I. Fajjari, N. Aitsaadi, and M. Gueroui, “5gc-observer
demonstrator: a non-intrusive observability prototype for cloud native
5g system,” in Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2023, pp. 1–3.

[23] X. Vasilakos, B. Köksal, D. H. Izaldi, N. Nikaein, R. Schmidt, N. Fer-
dosian, R. F. Sari, and R. Cheng, “ElasticSDK: A monitoring software
development kit for enabling data-driven management and control
in 5G,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, Apr. 2020, pp. 1–7.

[24] P. Veitch, J. Browne, and J. Krogell, “An Integrated Instrumentation and
Insights Framework for Holistic 5G Slice Assurance,” in Proc. of the
IEEE Conference on Network Softwarization (NetSoft), Jun. 2020, pp.
247–251.

[25] M. A. Garcia-Martin, M. Gramaglia, and P. Serrano, “Network automa-
tion and data analytics in 3gpp 5g systems,” IEEE Network, pp. 1–1,
2023.

[26] A. Mekrache, K. Boutiba, and A. Ksentini, “Combining network data
analytics function and machine learning for abnormal traffic detection
in beyond 5g,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM), 2023, pp. 1204–1209.

[27] D. M. Manias, A. Chouman, A. Al-Dulaimi, and A. Shami, “Slice-level
performance metric forecasting in intelligent transportation systems and
the internet of vehicles,” IEEE Internet of Things Magazine, vol. 6, no. 3,
pp. 56–61, 2023.

[28] Y.-H. Choi, D. Kim, and M. Ko. (2023) 5g traffic datasets. [Online].
Available: https://dx.doi.org/10.21227/ewhk-n061

[29] The Linux Foundation. (2022) Open Network Automation Platform
(ONAP). [Online]. Available: https://www.onap.org/

[30] B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in Proceedings of the 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16). Denver, CO: USENIX
Association, Jun. 2016. [Online]. Available: https://www.usenix.org/
conference/hotcloud16/workshop-program/presentation/burns

[31] srsRAN project. [Online]. Available: https://github.com/srsran/srsRAN
Project

[32] A. Gungr. (2022) Ueransim. [Online]. Available: https://github.com/
aligungr/UERANSIM

[33] “open5gs-k8s Github,” https://github.com/niloysh/open5gs-k8s.
[34] 3GPP, “Management and orchestration; 5G performance measurements,”

3GPP, Technical Specification (TS) 28.552, 09 2020, version 17.0.0.
[35] “Avalanche,” https://github.com/prometheus-community/avalanche.

Niloy Saha is a Ph.D. student at the University of
Waterloo. He received his Master’s degree in Com-
puter Science from the Indian Institute of Technol-
ogy, Kharagpur, India. His research interests include
next-generation mobile networks, network telemetry,
and intelligent algorithms orchestration and manage-
ment of 5G and beyond networks.

Nashid Shahriar is an Assistant Professor in the
Department of Computer Science at the University
of Regina. He received his PhD from the School
of Computer Science, University of Waterloo in
2020. He is the recipient of 2023 Young Profes-
sional Award from IEEE Communications Society
Technical Committee on Network Operation and
Management and 2020 PhD Alumni Gold Medal
and 2021 Mathematics Doctoral prize from the Uni-
versity of Waterloo. His research received several
recognitions, including the IEEE/IFIP NOMS 2022

Best Student Paper Award, IFIP/IEEE IM 2021 Best PhD Dissertation Award,
the IEEE/ACM/IFIP CNSM 2019 Best Paper Award, IEEE NetSoft 2019
Best Student Paper Award, and the IEEE/ACM/IFIP CNSM 2017 Best Paper
Award. His research interests include resource optimization and monitoring
in network function virtualization and software-defined networking and en-
hancing security and reliability of network slices in 5G and beyond mobile
networks.

Muhammad Sulaiman (Student Member, IEEE)
received BS in Electrical Engineering from the Na-
tional University of Sciences and Technology, Pak-
istan, in 2019. He joined the University of Waterloo
for a Master of Mathematics (MMath) in Computer
Science in 2020 and transferred to the Ph.D. program
soon after. His work was nominated for IEEE/IFIP
NOMS best paper award in 2022 and 2023. His
research interests include reinforcement learning,
optimization of computer networks, and autonomous
management and orchestration of mobile networks.

Noura Limam received the M.Sc. and Ph.D. de-
grees in computer science from the University Pierre
and Marie Curie (currently Sorbonne University),
France, in 2002 and 2007, respectively. She is a
Research Assistant Professor of Computer Science
with the University of Waterloo, Canada. She is
an active researcher and a contributor in the area
of network and service management. Her current
interests revolve around network automation and
cognitive network management. She is the Chair of
the IEEE ComSoc Network Operations and Manage-

ment Technical Committee, an Associate Editor of the IEEE Communications
Magazine, and a Guest Editor of the IEEE Communications Magazine
Network Softwarization and Management Series.

Raouf Boutaba received the M.Sc. and Ph.D. de-
grees in computer science from Sorbonne University
in 1990 and 1994, respectively. He is currently a
University Chair Professor and the Director of the
David R. Cheriton School of Computer Science
at the University of Waterloo (Canada). He is the
founding Editor-in-Chief of the IEEE Transactions
on Network and Service Management (2007-2010)
and served as the Editor-in-Chief of the IEEE Jour-
nal on Selected Areas in Communications (2018-
2021). He is a fellow of the IEEE, the Engineering

Institute of Canada, the Canadian Academy of Engineering, and the Royal
Society of Canada.

Aladdin Saleh is currently priming research and
innovation activities at Rogers communications,
among them the joint research partnership with
the University of Waterloo on 5G and emerging
technologies. He has over 20 years of industry
experience in mobile telecom in Canada. He earned
a Ph.D. degree in electrical and electronic engi-
neering and an MBA in International Management,
both from the university of London in the UK. He
taught and conducted research on next-generation
wireless networks at several universities as a full-

time professor, Adjunct professor, and a visiting researcher. He is currently
an Adjunct Professor with the Cheriton School of Computer Science at the
University of Waterloo.

https://github.com/open5gs/open5gs
https://github.com/open5gs/open5gs
https://dx.doi.org/10.21227/ewhk-n061
https://www.onap.org/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://github.com/srsran/srsRAN_Project
https://github.com/srsran/srsRAN_Project
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://github.com/niloysh/open5gs-k8s
https://github.com/prometheus-community/avalanche

	Introduction
	Literature Survey
	Monarch Design and Operation
	Monarch Overview
	Monitoring API
	Flow of a monitoring request
	Monitoring algorithms

	Proof-of-concept Implementation and Use-cases
	Performance Evaluation
	Experimental Setup
	System Performance
	Fixed vs. Adaptive Monitoring

	Discussions
	Conclusion
	References
	Biographies
	Niloy Saha
	Nashid Shahriar
	Muhammad Sulaiman
	Noura Limam
	Raouf Boutaba
	Aladdin Saleh

