
1

Reinforcement Learning for Radio Resource
Management in RAN Slicing: A Survey

Mohammad Zangooei, Niloy Saha, Morteza Golkarifard and Raouf Boutaba
{mzangooei, n6saha, mgolkari, rboutaba}@uwaterloo.ca

University of Waterloo, Canada

Abstract—Dynamic radio resource allocation to network slices
in mobile networks is challenging due to the diverse requirements
of RAN slices and the dynamic environment of wireless networks.
Reinforcement learning (RL) has been successfully applied to
solve different network resource allocation problems where an
agent learns how to choose the best action from the interactions
with the environment. This survey studies the state-of-the-art RL
approaches that address radio resource management in radio
access network (RAN) slicing. To this end, we first categorize
different problem definitions based on the network environment.
Then, we explain how each environment can be modeled as a
Markov decision process (MDP) and what RL algorithms can be
used to solve them. In addition, we discuss the challenges present
in existing works and suggest strategies to address them.

Index Terms—RAN Slicing, Radio Resource Management, Re-
inforcement Learning, Markov Decision Process, Next-generation
Networks.

I. INTRODUCTION

Next-generation mobile networks are envisioned to support a
broad range of services with diverse requirements such as high
data rate, ultra-reliability, sub-millisecond latency, and a large
number of connections [1], [2]. Meeting all these stringent and
heterogeneous requirements is challenging and cannot be met
using a shared one-size-fits-all network setting. Network slicing
enabled by software-defined networking and network function
virtualization become a promising solution that provides these
services by allowing multiple logical networks, i.e., network
slices to operate on top of the same physical infrastructure [1],
[2].

Network slicing involves both the core network and radio
access network (RAN). Network slicing in the core network,
i.e. core slicing, is well studied and can be achieved by scaling
up computing resources; however, network slicing in RAN, i.e.
RAN slicing, still remains a challenging problem due to the
scarcity of radio resources, dynamic conditions of wireless
channels, and interference. Efficient management of radio
resources improves service delivery and utilization of network
resources, resulting in higher revenues and lower costs for
mobile network operators (MNO).

Slicing-aware radio resource management (RRM) can be
seen as a two-level hierarchical problem: inter-slice and intra-
slice resource allocations. The former problem determines the
share of radio resources that should be allocated to network
slices and the latter schedules the radio resources among
different users of the same slice [1], [2]. An overview of
the slicing-aware RRM problem is depicted in Figure 1 where

Fig. 1. Radio resource allocation to requests of different slices. Users of
different slices (depicted by distinct colors) arrive at the BS coverage over
times. RAN slicing module decides how physical resource blocks (PRBs)
should be dynamically allocated to slices.

RAN slicing module is responsible for satisfying the demands
by dynamically and efficiently allocating radio resources to
requests.

Reinforcement learning (RL) techniques have received con-
siderable attention for solving the RAN slicing problem since
traditional methods fail to deal with the problem’s complexities.
Firstly, traditional methods require a closed-form formulation
that explains the relationship between resource allocation and
service-level agreement (SLA) satisfaction. However, there
exists no such accurate model due to the heterogeneity of
slice SLAs, the stochasticity of wireless communications, and
the complexity of the underlying queuing-based resource-
sharing methods. Consequently, approximated formulations
are commonly utilized despite accuracy concerns. In contrast,
model-free RL methods do not need such a model; instead,
they proactively interact with the environment to develop a
model within their available computation capacity [3], [4].

Secondly, future slice demands are unknown and need
to be estimated at RAN slicing decision time. Nonetheless,
traditional methods fall short in demand estimation for all
possible scenarios. Contrarily, relying on deep neural networks,
RL algorithms can adapt themselves to different environments
and implicitly account for future demands [5].

Nonetheless, RL methods should be carefully leveraged to
address RRM problems. Not all RL-based propositions follow
the same problem formulations and exploit the same algorithms
to attack the problem. These different approaches come with
their advantages and disadvantages, which will be discussed
in Section III. Moreover, we identify particular challenges in

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

2

effectively defining the corresponding Markov decision process
(MDP) and leveraging RL techniques to solve the RAN slicing
problem in Section IV. In the same section, we suggest methods
for coping with these challenges based on the existing proposals
in the literature.

II. RELATED WORK

Traditional methods including queuing theory, Lagrange
methods for optimization, Thompson sampling, genetic meth-
ods, and heuristic methods, have been used to solve RAN
slicing problems [4], [6]. However, these methods are not well
suited to the specific characteristics of next-generation mobile
networks and their heterogeneous service requirements.

First of all, the approximate mathematical models that are
used in traditional optimization methods cannot thoroughly
represent complex dynamics in real networks [7], [8]. Further-
more, the complexity of wireless networks is growing with
increasing device numbers, evolving communication models,
and heterogeneous quality of service (QoS) requirements [3]–
[5], [7], [9], [10]. According to [9], the number of settings
required for optimization has increased from 1500 settings for
4G to more than approximately 2000 for 5G.

Moreover, high computational complexities of searching in
large, complex, and dynamic scenarios often lead to suboptimal
performance of the mentioned methods [4], [9], [11]. Lastly,
network conditions often demonstrate long-term and short-term
trends due to the dynamics of service traffic and the physical
layer of networks, respectively. But traditional methods do not
adapt to such hidden network dynamics as they lack the ability
to learn data patterns [7].

With all of these limitations, researchers have recently
resorted to RL-based approaches. Several RL-based RAN
slicing methods have been proposed in the literature to consider
a delicate investigation into them. A group of related survey
papers discuss the application of machine learning (ML) in
network slicing, while other similar papers [1], [2] specifically
investigate the application of ML in RAN slicing, which are
closer to this article. Such studies provide neither insights on
how RL algorithms should be exploited nor a comparative
investigation of different RL components in RAN slicing.
Specifically, they offer a general overview of ML methods
in user and slice admission control, resource scheduling,
energy efficiency, isolation, resource virtualization, and power
management in slicing. Besides, they cover a limited number
of RL-based proposals and only consider single-cell scenarios.

To fill this gap, we offer a comprehensive review of RL-
based RAN slicing proposals. Notably, we identify the single-
cell and multi-cell taxonomies, discuss the definition of MDP
components and the underlying advantages and disadvantages,
argue the trade-off between different RL algorithms, and
provide the crucial challenges in the effective use of RL for
the RAN slicing problem as well as the suggested solutions
for them in the literature.

III. PROBLEM FORMULATION TAXONOMY

Formulating an RL problem is to define the corresponding
MDP, and the triple of (state, action, reward), which character-
izes how an RL agent interacts with the environment. The state

Fig. 2. Elements of MDP in radio resource management problems.

is the set of variables the agent observes from the environment
and takes action based on that. The ultimate goal of the RL
agent is to maximize the cumulative reward it receives from
the environment upon taking action per step in an episode of
interactions.

In this article, we focus on the inter-slice resource allocation
problem where propositions in the literature can be classified
into two general groups: single-cell and multi-cell RAN slicing.

In the first group, the algorithm is locally implemented in the
base station (BS) itself, which brings the following advantages:
(i) the problem is decomposed into different entities, so the
complexity is reduced, and (ii) no communication is conducted
between the BSs and a designated controller, which mitigates
the latency and overhead of the control loop. As a result, RAN
slicing quickly adapts to changes in the system’s state.

Contrarily, coordinating neighboring BSs in the second
group of proposals provides the following benefits: (i) resource
compensation in case of congestion [12], and (ii) interference
management to avoid service degradation [13]. These two
different problem formulations and RL-based algorithms are
elaborated in III-A and III-B.

A. Single-cell RAN Slicing RL Formulation

A single-cell RAN slicing problem models how to distribute
the available radio resources in the form of physical resource
blocks (PRBs) between different slices to satisfy their KPI
requirements. In what follows, we extensively discuss how
different elements of the MDP are defined and RL algorithms
are exploited to solve RAN slicing in the single-cell scenario.
An illustration of RL agent interaction with the single-cell RAN
slicing environment is depicted in Figure 2, and a summary of
the state, action, reward, and RL algorithm options is presented
in Table I.

State. Variables that have been used as the MDP state in the
literature can be categorized into four different classes capturing
demand, resource utilization, slice realized performance, and
slice requirements. Specifically, the number of arrived (buffered)

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
SUMMARY OF STATES, ACTIONS, REWARDS, AND RL ALGORITHMS USED IN THE LITERATURE FOR SINGLE-CELL RAN SLICING

Ref. State Action Reward RL Algorithm

[3] number of arrived packets in each slice per slice number of PRBs weighted sum of latency and throughput
of slices

PPO, DQN, Dueling
DQN, AC, and A2C

[4] number of arrived packets in each slice per slice number of PRBs weighted sum of spectrum efficiency and
SSR

GAN-DDQN and Dueling
GAN-DDQN

[5] number of arrived packets in each slice per slice number of PRBs a handcrafted function of spectrum effi-
ciency and SSR

LSTM-A2C

[6] particular state for eMBB and mMTC slices per slice number of PRBs SLA satisfaction Model-Based RL with
Kernels

[7] number of users in each slice per slice number of PRBs total throughput Adaptive IPO and TRPO
[9] PRB allocation and usage, SLAs, SSR, num-

ber of arrived, buffered, and sent packets
per slice number of PRBs SSR × spectrum efficiency DQN

[10]
particular state for eMBB and uRLLC per slice number of PRBs particular reward for eMBB and uRLLC correlated DQN

packets [3] [4] [5] [6] [9], transmitted packets [9], and users
[7] [6] in each slice advise the agent of the current demand
per slice whilst PRB usage ratio and the number of allocated
PRBs [9] [6] give hint about resource utilization. Furthermore,
throughput and delay requirement [9] highlight requests of
each slice whereas slices’ SLA satisfaction ratio (SSR) [9] [6]
indicates the realized performance of each slice.

There is a consensus in the literature as to include the demand
metrics in the MDP state while the other three types of metrics
are not present in every RL-based proposal. On the one hand,
providing a comprehensive view of the system comprising
slices’ demand, resource allocation, and SLA requirements and
satisfaction guides the agent to find the relationship between
them. On the other hand, including many variables in the MDP
raises dimensionality concerns, leading to convergence issues.

Action. According to the literature [3]–[7], [9], [10], the
number of PRBs per slice is recommended as the action of
RL agent.

Reward. SSR and Service efficiency (SE) are the major
components of the proposed reward functions in the literature.
The reward of the agent in [4] is a weighted sum of SE and SSR
in different slices; however, authors in [5] claim that if a linear
combination of SSR and SE is used, it could lead to a blind
sacrifice of SSR in exchange for an increase in SE, resulting
in SLA violations. In response, they propose a handcrafted
reward function to avoid such entanglement. Following the
same objective, the reward is defined as SSR × SE in [9] to keep
both metrics high at the same time. Additionally, constrained
RL approaches provide a means to separate the SSR from SE in
a such way that one can define SLA-related constraints to keep
SLA violations below the intended threshold while optimizing
for higher SE. Such a method is shown to be superior to the
previous ones in dealing with these two conflicting objectives
[7].

Reward in [3] only encourages higher resource utilization
without considering SLAs, hindering multiplexing gains in
RAN slicing. On the other hand, in a multi-agent framework,
specialized rewards are defined per slice type to better capture
the corresponding service type: eMBB’s reward is proportional
to the throughput sum [10] and SLA satisfaction in terms of
average buffer length, data rate, and PRB usage [6] while the
reward is inversely proportional to the queuing delay for the

uRLLC [10] and mMTC [6] agents.
RL algorithm. The choice of RL algorithm is also of

paramount importance as it affects the agent’s convergence in
terms of speed and stability. In this part, we discuss various
aspects of the RL algorithms that have been exploited in RAN
slicing literature.

Value-learning vs. Policy-gradient. In value learning methods,
observed rewards are exploited to fit a value function for
each pair of state and action. Classic value learning methods,
including deep Q learning (DQN) suffer from the value
overestimation problem. In this regard, advanced methods
like double and dueling DQN (DDQN) and distributional
RL are proposed to solve that limitation through decoupling
action selection from evaluation and calculating the complete
distribution of Q-values [4], [11], [12] which come with higher
computational costs. In contrast, action selection policy is
directly developed in policy-gradient methods by making high-
reward actions more likely using gradient ascent (e.g., A2C,
DDPG, and TD3) [6], [13]. Controlling the difference between
the new and old policies, trust region policy optimization
(TRPO) enables a smooth performance improvement [6] despite
incurring high computation costs. To reduce the required
computations, proximal policy optimization (PPO) follows a
simpler technique in estimating the difference between policies
[6], [14].

On-policy vs. Off-policy. In on-policy RL algorithms (e.g.,
TRPO, PPO, and A2C), the policy that is under development
is also utilized to generate new samples. However, off-policy
algorithms (e.g., DQN, DDPG, TD3) maintain separate policies
for development and sample generation. Such algorithms keep
a buffer of the agent’s experiences collected at any time and
update the under-development policy after a few interactions
with the environment [14]. Although off-policy algorithms
enjoy a higher sample-efficiency (thus faster convergence),
on-policy algorithms together with the actor-critic methods
provide higher stability during training with monotonic policy
improvement. Besides, off-policy algorithms require extensive
hyperparameter search which hurts stability and generalizability
[14].

Single-agent vs. Multi-agent. Single-agent RL approaches
require too long training in scenarios with high action and
state dimensions. One way to cope with this problem is to

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

4

decompose it into multiple sub-problems and formulate it as a
multi-agent RL [13]. Agents in a multi-agent RL approach can
operate with or without coordination among them. Coordination
among the agents to better estimate the global state and other
agents’ policies improves the overall performance, although it
incurs communication overhead [13].

Model-free vs. Model-based. Model-free RL approaches
(e.g., A2C, PPO, and DQN) are most useful when the agents
are trained before real-world deployments, as they require a
large number of samples for learning. These long training
periods, which involve inefficient policies, can lead to frequent
SLA violations and/or excessive resource over-provisioning in
RAN slicing [6]. On the contrary, model-based RL approaches
[6] overcome such limitations, allowing for greater sample
efficiency and accelerated learning. However, model-based
RL approaches suffer from their limited capacity in learning
compared to model-free RL methods.

TABLE II
ADVANTAGES AND DISADVANTAGES OF RL TECHNIQUES IN THE

LITERATURE FOR SINGLE-CELL RAN SLICING

RL approach Advantages and disadvantages

value-learning [4], [11], [12]
vs. policy-gradient [6], [13]

Policy-gradient methods offer a stable
behavior improvement as they limit
policy modification in each training step,
so they are more suitable for online
learning.

on-policy [6], [13], [14]
vs. off-policy [4], [11], [12]

Off-policy approaches provide faster
convergence, but they require extensive
hyperparameter tuning which aggravates
generalizability of such methods.

single-agent [4], [11], [14]
vs. multi-agent [10], [12], [13]

Single-agent RL algorithms fall short
when the size of action-state spaces
increases in case of numerous slices
while decomposing the problem us-
ing multi-agent RL addresses the high-
dimensional problems.

model-free [5], [7], [8]
vs. model-based [6]

Model-free RL algorithms provide a
higher sample efficiency although they
are limited in their learning and gener-
alization capacities.

The presented decision dimensions in RAN slicing suggest
the complications of deciding about the RL algorithm. A
summary of the advantages and disadvantages of different
RL methods is presented in Table II.

B. Multi-cell RAN Slicing RL Formulation
As opposed to single-cell RAN slicing, different problem

formulations with distinct objectives have been pursued in the
multi-cell RAN slicing literature. Particularly, they consider
jointly deciding users’ serving BS, slice, and bandwidth on
the corresponding BS [11], selecting per slice bandwidth,
scheduling algorithm, and modulation and coding offset [8],
[14], compensating resources across BSs [12], and accounting
for the effect of inter-cell interference [13].

Due to this heterogeneity in objectives, we refuse to
compare their MDP components and RL algorithms as we
did for the case of single-cell. Instead, we carefully investigate
their method, highlighting the advantages and disadvantages.
Nonetheless, we summarize the different components of multi-
cell RAN slicing in Table III for survey completeness.

To efficiently manage the access of different devices to
a pair of (BS, slice) while considering security and privacy
concerns, authors in [11] resort to federated RL. Accordingly,
they train local models on devices with two-layer aggregations:
samples of the same service types and then different service
types. Nonetheless, this approach comes with the following
shortcomings: (i) although the security and privacy of users
are guaranteed in this scheme, it reveals the data of slices’
available bandwidth on each BS which raises security concerns
for mobile networks; (ii) the association of each device with a
pair of (BS, slice) is decided separately rather than considering
a holistic view of devices, so it is pruned to suboptimality.

Opening the door of resource compensation across BSs,
authors in [12] devise a means of PRB redistribution in
the lower level of their two-level resource allocation scheme
between the consecutive high-level RAN slicing decisions. To
deal with the high dimensionality of the problem, they resort to
distributed multi-agent RL techniques in such a way that each
BS is considered as an agent. They further propose to conduct
the training procedure in an offline manner from a collected
dataset due to the required heavy computations in online
learning. Nonetheless, they do not provide any insights on
how this offline learning generalizes to real-world deployments.
Additionally, different agents are trained independently, which
raises suboptimality concerns as they do not share their
experiences and consider each other’s demands.

The authors in [13] highlight the effect of inter-BS inter-
ference on overall network performance and SLA satisfaction.
To take it into account, they exploit coordinated multi-agent
methods in a way that each agent is associated with a specific
BS. Assuming that load-coupling inter-BS interference is the
main cause of the inter-agent dependencies, they let each agent
communicate its per slice load information with its neighboring
agents which will be fed to the RL agent as part of the state.
In comparison to a centralized approach deciding RAN slicing
on all BSs using a single agent, the evaluations reveal that the
proposed coordinated multi-agent approach converges faster
and gives better performance.

IV. CHALLENGES IN EFFECTIVE USE OF RL IN RAN
SLICING

Although exploiting RL techniques can potentially improve
service delivery and resource utilization, certain challenges
might hinder the expected performance. Particularly, a RAN
slicing RL agent can take random actions during training,
leading to slice SLA violation or resource over-provisioning.
Moreover, MNOs should be able to accommodate new slices
upon request, but most of the proposed RL-based RAN slicing
problem formulations cannot provide such a capability. In this
section, we present different challenges to be considered in
devising an RL-based RAN slicing and argue how proposals
in the literature failed or succeeded in dealing with them as
summarized in Table IV.

A. Constraint-awareness
One main issue in real-world deployments of RL methods is

the possibility of taking random actions during online training.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

5

TABLE III
SUMMARY OF STATES, ACTIONS, REWARDS, AND RL ALGORITHMS USED IN THE LITERATURE FOR MULTI-CELL RAN SLICING

State Action Reward RL Algorithm

[8]
average slices traffic and users’
channel quality, PRB usage, SSR,
and SLA thresholds

per slice number of PRBs,
MCS offset, scheduling algo-
rithm

negative total resource usage,
a separate cost value capturing
performance degradation

multi-agent PPO (each agent repre-
senting a slice) along with an action
modifier across slices

[11]
current serving BS and slice, allo-
cated PRBs to slices on each BS

joint selection of per user BS,
slice, and number of PRBs

bandwidth efficiency minus sig-
naling overhead

DDQN

[12]
higher-level: previously allocated
PRBs to each BS, sets of BSs and
PRBs; lower-level: channel gain
between each BS and its users,
minimum data rate and maximum
delay, users with a BS and its PRBs

higher-level: distributing PRBs
to BSs; lower-level: assigning
BS PRBs to its users and re-
quest additional PRBs from
other BSs when needed

higher-level: sum of achieved
users’ data rate; lower-level: to-
tal sum-rate subject to ultra-low
latency requirements of uRLLC
services and minimum data rate
requirements of eMBB services

higher-level: multi-armed bandit;
lower-level: distributed multi-agent
DDQN without coordination (each
agent representing a BS)

[13]
average per slice user throughput,
load, number of active users, and
neighbouring load

per slice number of PRBs on
each cell

SSR distributed multi-agent TD3 with
coordination (each agent represent-
ing a BS) following actor-critic

[14]
per slice average rate and buffer
size, and assigned PRBs

per slice number of PRBs,
scheduling algorithm

eMBB slice rate, mMTC slice
transfer block size, and uRLLC
slice negative buffer size

PPO

Especially in the case of RAN slicing, where the network is
supposed to accommodate different slices’ SLAs, RL agents’
exploration can lead to not respecting these demands. In
particular, authors in [8] demonstrated that an RL agent could
have more than 30% violations of the slices’ SLA during the
online learning phase. Therefore, appropriate strategies should
be adopted to mitigate this issue.

Two strategies with different effective time spans are pursued
to take SLA requirements into account. One of them motivates
respecting constraints in the long run by incorporating them
into reward while the other approach guarantees that each
action does not immediately violate the constraints.

To realize the first strategy, a notion of slices’ SSR is included
in reward utilizing a log-barrier function [7] or Lagrangian
primal-dual method [8] to adaptively encourage the solver to
respect the constraints. Moreover, following a model-based
RL method, a predictor is quickly trained in [6] to estimate
whether each action for a given state leads to SLA satisfaction.

A safer learning process is provided when SLA constraints
are taken into account using specialized functions rather than
negative values in reward design. The agent in the latter
scenario is unaware of the trade-offs involved between resource
violations and SLA satisfaction, whereas we make the agent
aware in the former case. Model-based methods are limited in
their learning capabilities — they only consider a limited set of
scenarios and fail to adapt to the varying network conditions.

Although the first strategy is effective in the long run,
constraints should not be violated frequently even in a short
time span. In this regard, the action generated by the policy
network is projected to a feasible space in which the accu-
mulated constraints remain below a certain threshold in [7].
Following the same objective, authors in [8] design a proactive
policy switching mechanism to switch to a baseline policy for
managing resources if the RL policy is predicted to violate the
slice SLA.

SLAs cannot be effectively met by the proposed methods for
two reasons; it is not argued [7] how a feasible action space
should be appropriately estimated in the early stages of learning
when the agent does not know the impact of each action.

Additionally, modifying RL agents’ actions can jeopardize the
learning process in the long run as it increases the correlation
between the agent’s interactions with the environment and
limits its space exploration [7] [8].

B. Generalizability

The rationale behind offline training is that it is inefficient
to allow an RL agent to learn online from scratch within real
networks. This is because the agent usually requires a large
number of training steps during which the it is prone to take
random actions. To mitigate this issue, agents can learn offline
to imitate a baseline policy based on the dataset collected
from the interactions between that policy and real networks. In
particular, behavior cloning can be leveraged to train a policy
to minimize the differences between generated actions by the
under-train policy and the baseline policy with supervised
learning [8].

Nevertheless, we cannot rely on offline training due to
the specific characteristics of a deployment scenario that is
not part of the training dataset. In online training, the RL
agent uses live data from the RAN and performs exploration
steps on the online RAN infrastructure. Therefore, the agent
will adapt itself to the deployment-specific features, leading
to improved generalizability. In this regard, the results in
[14] confirm that online training can help pre-trained models
evolve and meet the demands of the specific environment
in which they are deployed; however, at the cost of reduced
RAN efficiency during the online training phase. However, the
methods provided in Section IV-A can help reduce such costs
during online training.

Transfer learning is another approach to convergence acceler-
ation of RL algorithms by which the RL agent at an expert BS
learns a policy from scratch until convergence, while the RL
agent at a learner BS reuses the expert BS’s learned policy by
initializing the target model with the architecture and weights
from the trained models [3]. Nonetheless, the proposed method
in [3] is limited to the cases where the configurations of the
RL agent do not change from the expert BS to the learner

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

6

TABLE IV
SUMMARY OF RAN SLICING CHALLENGES ADDRESSED IN THE LITERATURE.

Challenge Description Suggested solution approach References

Constraint-
awareness

slice SLAs impose QoS requirements that should be
satisfied over both short and long time spans, but they
might be violated during the training stage

guaranteeing SLAs using constrained-RL approaches
that offer safe learning

[6]–[8]

Generalizability training RL algorithms from scratch in production net-
works results in frequent SLA violations, necessitating
training in a generalizable manner before deployment

Offline learning methods such as imitation learning
and behaviour cloning based on the interaction trace
of a baseline policy with the production network

[3], [8], [14]

Flexibility in
number of slices

Tenants request slices over time, which requires algorithms
that support a dynamic number of slices

Considering a separate agent for each slice with
knowledge reuse across slices of the same slice type

[9], [10]

Scalability in
number of slices

when the number of slices grows, the algorithms should
not be negatively affected

Space reduction methods to avoid too large state and
action sizes which deteriorate the agent’s performance

[9], [15]

Robustness RL algorithms rely on measurements from the underlying
infrastructure that can be noisy. Thus, they should tolerate
noises in such measurements

Extracting significant features of the state space [4], [14]

BS, so it does not generalize in this sense. Specifically, the
effectiveness of the method has only been tested in simulation,
but not yet in real-world deployments.

C. Flexibility in Number of Slices
MNOs should not be limited in the number of slices they

can offer, as tenants may demand new customized services
anytime. In addition, the temporary need for a slice suggests
supporting the capability of enabling or disabling slices on the
fly. Therefore, an effective RAN slicing management scheme
should be flexible in accepting and removing slices on demand.

Inflexibility in the number of slices comes from the fact that
only a fixed number of slices is considered in the corresponding
MDP, and then when the model is trained based on that, it will
not be possible to add a new slice to the system unless the
model is retrained. In particular, statistics of a fixed number
of slices are gathered as the state and actions are taken also
with respect to that fixed number of slices [3]–[5], [7].

To provide flexibility, an agent is responsible for allocating
the minimum required radio resource blocks to a slice, and
the agent is replicated or removed as the number of slices
fluctuates in [9]. As different slices’ actions might conflict, a
network slice controller is responsible for coordination between
agents. It is worth mentioning that because the actors (agents)
follow the policy trained by the learner, they all have the
same policy, enabling the fluctuation of the number of agents
during execution. Following the same policy would not have
been possible in their proposition unless the state, reward, and
action of different actors share the same structure despite the
difference between their requirements.

Specifically, they only consider one type of service with
different threshold levels as different slices. Nonetheless,
slices come with different KPI requirements and different
impacting factors, so a single slice type cannot accommodate
the heterogeneous set of services in 5G. Furthermore, a heuristic
algorithm is in charge of enforcing resource capacity constraints
which raises suboptimality concerns.

In contrast, a game theoretic approach can be followed where
specialized agents are designed for each slice that maximizes
their rewards, and the correlated equilibrium method balances

the reward of these agents to increase the overall reward of
the system [10]. Similar to the previous method, each agent
competes for more PRBs to achieve higher rewards which in
turn causes resource allocation conflicts in this multi-agent
system. To resolve this issue, a game theory-based method
such as correlated equilibrium is exploited to manage resource
distribution between these agents. This method, however, does
not explicitly investigate flexibility in the number of slices, but
it is potentially suitable for enabling flexibility as it considers
separate entities per slice.

D. Scalability in Number of Slices
As mentioned in the previous section, any limitation on

the number of slices is not tolerable for MNOs. Particularly,
when the number of slices increases unprecedentedly, the space
size of the state and action of a single agent can become
overwhelmingly large, degrading the RL-based algorithm’s
decision time and efficiency.

To address the enlargement problem of state-action size in
the case of many slices, each agent can be associated with
a separate agent [9]. Accordingly, the number of agents is
increased rather than the size of action-state space in the case of
adding more slices. This strategy encourages knowledge reuse
across agents, which reduces the complexity of training multiple
agents. However, it fails in supporting multiple policies.

Additionally, action space reduction methods are proven to
be effective in accelerating convergence and accommodating
scalability. For example, the action reducer technique proposed
in [15] is essentially a conventional optimization framework
that reduces the action size and then converts it back to the
original action space within a polynomial time complexity.

E. Robustness
RL algorithms depend highly on the measurements gathered

from the underlying network, notably the state and reward
variables. Such data is prone to noise and redundancy because
of the inherent measurement errors. Therefore, appropriate
techniques should be exploited to make the RL methods robust
to such noises.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

7

In this regard, a combination of distributional RL and
GAN can be leveraged to compute the distribution of action
value instead of its expected value as in regular DQN. The
distributional method is known to be robust against noises in
the environment [4].

To further robustify the RL methods, vital information should
be extracted from the measurements using compression and
feature selection techniques. Indeed, RAN produces a massive
amount of data that does not necessarily provide meaningful
insights into the actual state of the system due to redundancy. To
deliver a high-quality representation of the state, auto-encoders
can be utilized before feeding the selected features of the data
to the RL agent [14].

Computing the complete distribution of Q-values is computa-
tionally expensive and cannot scale with the size of the state and
action spaces. Moreover, the general idea of value distribution
calculation is only applicable to value learning RL methods but
not policy-gradient algorithms which are interesting in RAN
slicing because of their stable training behavior. Therefore, the
second approach [14] where the state and action are compressed
to extract the vital information is more suitable.

V. CONCLUSION AND FUTURE DIRECTIONS

Many attempts have been made to solve the RAN slicing
problem using RL. In this article, we present a thorough
investigation of how the corresponding MDP is formulated and
RL techniques are leveraged to solve the RAN slicing problem
in the literature. Furthermore, we provide the taxonomy on
single-cell and multi-cell RAN slicing scenarios and discuss
the underlying trade-off between them.

Additionally, we identify specific challenges in proposing
an effective RL-based RAN slicing method and categorize
proposed solutions based on how they fail or succeed in
solving those challenges. This study suggests that different
papers address disjoint subsets of challenges, and there exists
a shortage of investigating the possible trade-offs in jointly
addressing these challenges and a full-fledged solution that
solves them altogether.

REFERENCES

[1] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao,
“AI-assisted network-slicing based next-generation wireless networks,”
IEEE Open Journal of Vehicular Technology, vol. 1, pp. 45–66, 2020.

[2] Y. Azimi, S. Yousefi, H. Kalbkhani, and T. Kunz, “Applications of
machine learning in resource management for RAN-Slicing in 5G and
beyond networks: A survey,” IEEE Access, vol. 10, pp. 106 581–106 612,
2022.

[3] A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Transfer learning-
based accelerated deep reinforcement learning for 5G RAN slicing,” in
IEEE 46th Conference on Local Computer Networks (LCN), 2021, pp.
249–256.

[4] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered deep
distributional reinforcement learning for resource management in network
slicing,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 334–349, 2019.

[5] R. Li, C. Wang, Z. Zhao, R. Guo, and H. Zhang, “The LSTM-based
advantage actor-critic learning for resource management in network
slicing with user mobility,” IEEE Communications Letters, vol. 24, no. 9,
pp. 2005–2009, 2020.

[6] J. J. Alcaraz, F. Losilla, A. Zanella, and M. Zorzi, “Model-based
reinforcement learning with kernels for resource allocation in RAN
slices,” IEEE Transactions on Wireless Communications, 2022.

[7] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning based
approach for network slicing,” in IEEE 28th International Conference
on Network Protocols (ICNP), 2020, pp. 1–6.

[8] Q. Liu, N. Choi, and T. Han, “OnSlicing: Online end-to-end network slic-
ing with reinforcement learning,” in Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies,
2021, pp. 141–153.

[9] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and H. Mineno,
“Flexible resource block allocation to multiple slices for radio access
network slicing using deep reinforcement learning,” IEEE Access, vol. 8,
pp. 68 183–68 198, 2020.

[10] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slicing
in 5G using multi-agent correlated Q-learning,” in IEEE 32nd Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), 2021, pp. 1179–1184.

[11] Y.-J. Liu, G. Feng, J. Wang, Y. Sun, and S. Qin, “Access control for
RAN slicing based on federated deep reinforcement learning,” in IEEE
International Conference on Communications (ICC), 2021, pp. 1–6.

[12] A. Filali, Z. Mlika, S. Cherkaoui, and A. Kobbane, “Dynamic SDN-
Based radio access network slicing with deep reinforcement learning for
urllc and embb services,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 4, pp. 2174–2187, 2022.

[13] T. Hu, Q. Liao, Q. Liu, D. Wellington, and G. Carle, “Inter-cell slicing
resource partitioning via coordinated multi-agent deep reinforcement
learning,” arXiv preprint arXiv:2202.12833, 2022.

[14] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-RAN:
Developing machine learning-based xApps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions
on Mobile Computing, pp. 1–14, 2022.

[15] A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experi-
enced deep reinforcement learning with generative adversarial networks
(GANs) for model-free ultra reliable low latency communication,” IEEE
Transactions on Communications, vol. 69, no. 2, pp. 884–899, 2020.

BIOGRAPHIES

Mohammad Zangooei is a Ph.D. student at the David R. Cheriton School of
Computer Science at the University of Waterloo. He received his Bachelor’s
degree in Electrical Engineering from the Sharif University of Technology,
Tehran, Iran. His research interests revolve around next-generation mobile
networks, artificial intelligence, and programmable data planes.

Niloy Saha is a PhD student at the David R. Cheriton School of Computer
Science at the University of Waterloo. He received his Masters degree in
computer science from the Indian Institute of Technology, Kharagpur, India.
His research interests are focused on building next-generation mobile networks
and intelligent algorithms for their orchestration and management.

Morteza Golkarifard received his B.Sc., M.Sc., and Ph.D. degrees in computer
engineering from the Sharif University of Technology. He is currently a post-
doctoral fellow at the David R. Cheriton School of Computer Science at the
University of Waterloo. His research interests include 5G networks, NFV, and
SDN.

Raouf Boutaba received his M.Sc. and Ph.D. degrees in computer science
from Sorbonne University in 1990 and 1994, respectively. He is currently
a University Chair Professor and the director of the School of Computer
Science at the University of Waterloo. He is the founding Editor-in-Chief of
IEEE Transactions on Network and Service Management and a Fellow of the
Engineering Institute of Canada, the Canadian Academy of Engineering, and
the Royal Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 14,2023 at 17:31:44 UTC from IEEE Xplore. Restrictions apply.

