
1

Deep Reinforcement Learning Approaches to
Network Slice Scaling and Placement: A Survey

Niloy Saha, Mohammad Zangooei, Morteza Golkarifard and Raouf Boutaba
{n6saha, mzangooei, mgolkari, rboutaba}@uwaterloo.ca

University of Waterloo, Canada

Abstract—Network slicing in 5G and beyond networks allows
the network to be customized for each application or service,
by chaining together different virtualized network functions
(VNFs) according to service requirements. The increased flexibility
offered by network slicing comes at the cost of complexity
in management and orchestration, which cannot be solved by
traditional reactive human-in-the-loop solutions. This necessitates
minimizing human intervention through the use of artificial
intelligence (AI) techniques (zero-touch network management). In
particular, the scaling and placement of the chain of VNFs which
comprise a network slice is a complex combinatorial optimization
problem which is difficult to solve effectively with traditional
approaches. Driven by the benefits of deep reinforcement learning
(DRL) in solving various combinatorial optimization problems,
in this article, we survey various DRL-based approaches to slice
scaling and placement, including different ways to model the
problem and benefits of various DRL techniques in addressing
specific aspects of the problem. Further, we highlight key
challenges and open issues in the effective use of DRL for network
slice scaling and placement.

Index Terms—Network Slicing, Resource Scaling, 5G and
Beyond, Reinforcement Learning

I. INTRODUCTION

5G and beyond mobile networks are expected to support
a variety of emerging use cases, such as holographic telep-
resence and immersive extended-reality, which impose strict
requirements on the mobile network along several dimensions,
such as throughput, latency, and reliability. To address these
requirements, network slicing in 5G allows the network to be
customized for each application or service, by chaining together
different virtualized network functions (VNFs). The creation
of network slices involves the instantiation and deployment of
a chain (or network) of VNFs at the right location (placement)
and with the appropriate capacity (scaling), to meet stringent
requirements imposed by the 5G services. The resources
allocated to network slices must conform to the dynamics of
network demands, which are unpredictable and vary with time
and user mobility. Thus, the complexity in the management and
orchestration of network slices makes it necessary to reduce
human intervention and rely on automated zero-touch network
management approaches.

Network Slice Scaling and Placement (NSSP) A net-
work slice comprises a chain VNFs with associated service
requirements (e.g., end-to-end delay or throughput). The NSSP
problem involves instantiation or reconfiguration of a network
slice by deciding the resource allocation and placement of
each VNF in the slice. The scaling step requires deciding how

many instances of a particular VNF to create and how much
resources to allocate to each instance, while the placement step
requires deciding which physical node to place each instance
of a VNF.

Figure 1 shows a generic network slice diagram, consisting
of two slices. Consider Slice 1, comprising of three network
functions (NFs), NF1→NF2→NF3. These NFs depend on
requirements of the slice — NFs can be security related (e.g.,
firewall), virtualized RAN functions, or 5G core functions. Each
slice also includes associated service requirements, e.g., ultra-
reliable low-latency communications (uRLLC) services in 5G
impose stringent latency (< 1𝑚𝑠) and reliability (> 99.999%)
requirements. The NSSP problem involves taking as input this
chain of NFs and deciding the embedding at the infrastructure
layer, while respecting the slice constraints in terms of service
level agreements (SLAs).

NF1 NF5

NF6

NF1

NF4

Slice 1

Slice 2

Edge cloud Central cloud

NF2 NF3 Dedicated NF for slice 1

Dedicated NF for slice 2

Shareable NF

Physical node

NF1 NF5

NF6
NF2

NF4

NF3

NF3

Service layer

Infrastructure layer
NSSP

Fig. 1. A generic network slice diagram showing two slices. Each slice is
composed of VNFs some of which may be dedicated to the slice or shared
among slices. Each VNF may have multiple instances and can be placed
at different candidate locations in the network including central cloud or
distributed edge cloud.

Traditional approaches for NSSP Most existing approaches
formulate NSSP as an optimization problem [1], which has
several limitations. First, these approaches are often intractable
or too computationally intensive to be applied in practical
settings. Second, they rely on accurate mathematical models
which assume complete knowledge of the state of the environ-
ment, which is very difficult to obtain in practice. Finally, these
methods also assume that traffic demands are predictable or
known apriori, which is unrealistic. To address these challenges,
several heuristic approaches also exist in the literature, however,
they disregard the long-term dynamics of resource requests
and can lead to frequent reconfigurations [2].

Deep Reinforcement Learning for NSSP Closed-loop
automation is crucial in realizing zero-touch orchestration and
management of network slices. Deep reinforcement learning
(DRL) is an intuitive fit for closed-loop automation; it is an



2

iterative process that uses feedback from the environment to
learn the correct sequence of actions to maximize a long-term
reward (e.g., operator revenue, energy and resource costs).
Unlike other AI techniques (e.g., supervised learning) which
are myopic in nature, DRL can intelligently adapt decisions
to variations in the requirements over time. When applied to
NSSP, DRL enables closed-loop optimization and control. At
each time step, the scaling and placement decisions of VNFs
output by DRL are used by the network orchestrator to modify
the VNF embedding at the infrastructure layer without the
need for human intervention. The reward obtained from this
process is then used in the next step for further improving the
decisions, thus facilitating closed-loop optimization.

From an optimization perspective, NSSP involves taking
an optimal action from a large finite set (often discrete)
of actions, and is, in essence, a combinatorial optimization
problem. In recent works, deep reinforcement learning (DRL)
has been shown to be very effective in addressing such
optimization problems [3] by automating the discovery of
good heuristics. Crafting good heuristics is time-consuming
and often requires substantial problem-specific knowledge.
DRL algorithms automate the discovery of good heuristics
by tailoring the search strategies to the problem instance
using a data-driven approach. DRL approaches can either be
model-based or model-free. Model-based approaches require
an accurate model of the environment for effective learning.
However, creating an accurate model of the E2E network slicing
environment is not cost-effective since a) the model may have
a huge number of configurable parameters across multiple
technological domains, and b) the model is dependent on time-
varying incoming slice demands. On the other hand, model-free
reinforcement learning techniques have the capability to learn
with continuous interactions with the environment, without
apriori knowledge of the network model or network statistics.
Thus, the existing approaches in the literature [4]–[11] adopt
model-free DRL approaches for NSSP.

A few existing surveys in the literature, such as [12], provide
valuable insights regarding the efficacy of DRL in the broader
topic of resource allocation for 5G network slicing, including
radio resource slicing and slice admission control. In contrast,
in this survey, we present a more focused look at NSSP, by
analyzing and comparing the state-of-the-art using criteria
specific to this problem such as VNF chaining and topology
awareness.

II. DRL FOR NSSP: PROBLEM FORMULATION

DRL enables data-driven learning by interacting directly
with the environment, and getting feedback in the form of
rewards. Over time, the DRL agent can learn the underlying
dynamics of a system, and leverage that to discover optimal
strategies. To apply DRL to NSSP, it is first modelled as a
sequential decision-making process. More specifically, as shown
in Figure 2, the agent (5G management and orchestration
framework) and the environment (5G network) interact at
discrete time steps. At each step, the agent obtains some
information about the environment state (e.g., traffic demand
of each slice, CPU/memory utilization of each VNF in a slice),

State

State encoding

Policy

Agent

Observe state (e.g., VNF 
resource consumption, 

node utilization)

RRU
Distributed 
edge cloud

Central cloud

Environment

Get reward 
(e.g., latency and 

energy costs)

Take 
action(s) 

Vertical 
scaling

Horizontal 
scaling

Placement

Physical node

VNF

VNF placed on 
physical node

Fig. 2. A high-level architecture showing DRL applied to the network slice
scaling and placement problem. The figure shows the DRL agent’s interaction
with the environment (5G network). The state encoder in DRL algorithms
are generally deep neural networks (DNNs) which act as non-linear function
approximators for the network state. Actions represent resource scaling and
placement decisions for VNFs in the network slice.

based on which the agent takes an action (e.g., add/remove
resources to a VNF in a slice, or add/remove more instances
of a VNF, or where to place a particular VNF). This leads to
the agent obtaining some form of feedback (e.g., reward such
as revenue from slice users) from the environment, giving rise
to a trajectory or sequence consisting of (state, action, reward,
next state). By repeating this process of interaction, the DRL
agent learns a policy, i.e., a strategy that dictates actions as a
function of the state, in order to achieve long-term goals.

Modeling approaches. The sequential decision-making
process described above is conveniently modelled using the
Markov decision process (MDP) and its variants.

• Markov decision process. In the context of RL, an MDP
may be formally defined by the tuple consisting of a set
of states, a set of actions, and a set of rewards, and the
goal is to find the policy that maximizes the expected sum
of the rewards.

• Semi Markov decision process. Slice requests do not arrive
at fixed intervals of time, but rather at random points in
time, which may be taken into account by considering semi
Markov decision processes (SMDPs). SMDPs extend the
MDP formalism by incorporating the notion of time, which
allows the agent to handle trade-offs between actions not
only based on expected rewards but also on the amount of
time each action takes. This allows the SMDP framework
to be more effective in capturing real-time slice scaling
events [13].

• Constrained Markov decision process. Network slice
scaling and placement requires the agent to consider
constraints (e.g., end-to-end latency) that may restrict
the freedom of exploring the search space. This notion
can be captured using constrained Markov Decision
Processed (CMDPs) [14]. CMDPs extend traditional MDP
by allowing the environment to provide feedback about
the cost of constraints, in addition to a reward signal. This
formulation is well suited to NSSP, where reward should
be maximized while maintaining several slice constraints,
such that they do not violate SLAs.



3

DRL setup. To formulate the NSSP problem as an MDP,
in general, the following elements are defined.

• State representation. The majority of the existing literature
uses a similar state representation, consisting of resource-
related features such as VNF resource consumption and
host node utilization [4]–[6], [8], [10]. A few works also
consider features impacting slice latency such as packet
arrival rate and queue length [7], [9], [11].

• Action representation. The action representation may
be discrete, continuous or hybrid, depending on the
type of action. Horizontal scaling, which involves in-
creasing/decreasing the number of active VNF instances,
or placement, which involves selecting a host node to
place VNFs gives rise of discrete action spaces [5], [6].
On the other hand, vertical scaling, which involves the
addition/removal of resources from existing VNFs gives
rise to continuous action spaces [7], [10]. Addressing both
scaling and placement jointly requires the use of both
continuous and discrete i.e., hybrid action spaces [4], [9].

• Reward function. The majority of the existing literature
use scaling and placement cost as the reward function.
The costs are usually calculated in terms of resource or
energy consumption for running VNFs belonging to a
network slice [5], [8], or blocking rate of slice requests
[11]. The reward function may also include penalties for
violating SLA constraints [5], [8], [9].

We summarize the various state, action, and reward repre-
sentations used in the existing literature in Table I. Once NSSP
has been expressed as an MDP (or its variants), various DRL
techniques may be utilized to find an optimal policy. These
are discussed in Section III.

III. DRL FOR NSSP: ALGORITHMS

The majority of the existing literature on NSSP leverages
model-free DRL algorithms, which learn through continuous
interactions with the environment, without apriori knowledge
of the network model or network statistics. At a high-level,
we classify them into value-based approaches and actor-critic
approaches. The existing works in the literature all formulate
the MDP in slightly different ways and use a variety of
algorithms, which are summarized in Table I.

Value-based approaches. Value-based approaches involve
finding the optimal policy by approximating the value of taking
an action in a given state, and choosing the best action based on
this approximation. This approach lends itself well to discrete
action spaces such as horizontal scaling or placement. One of
the simplest value-based methods is Monte Carlo, used in [4],
where the state-action value is the average of rewards for each
episode. Here an episode is the sequence of steps involved in
increasing/decreasing the resources for each VNF. Another
simple value-based approach is Deep Q Network (DQN),
which utilizes a neural network to approximate the state-value
function. In the context of NSSP, Lee et al. [5] utilized DQN
to address horizontal scaling. Here, the state-value function is
approximated using a two-layer multi-layer perceptron (MLP),
which acts as the state encoder. This approach is shown to have
much better long-term performance than simple threshold-based

scaling; however, the authors did not consider the placement of
the VNF instances. The combination of scaling and placement
decisions in NSSP leads to a combinatorially large discrete
state/action space, which is not well suited for the application
of simple DQN.

This issue is tackled by [6]; rather than scaling coarse-grained
network slices according to traffic demand, they consider very
fine-grained network slices, with each traffic flow mapped to a
network slice. The goal is to map the flows to specific slices
according to their demands in order to minimize long-term
resource consumption. In this setting, the action space can
be very large as it is combinatorial in the number of flows
and slices. To address this, the authors adopt the Branching
Duelling Q-Network (BDQ) framework. The core idea behind
BDQ is to avoid a combinatorial increase in action space by
having independent actions for each dimension. The action
branching framework allows the actions to increase linearly
with the number of dimensions of the action space, which is
useful for NSSP.

Actor-critic approaches. In contrast to value-based ap-
proaches, policy-based approaches, which learn the policy
directly, can support continuous action spaces. However, they
suffer from low sample efficiency, high variance, and slow
convergence. Actor-critic approaches combine the benefits of
both value and policy approaches by simultaneously learning
the value and policy function. A popular actor-critic algorithm
is advantage actor-critic (A3C), used in [7], which focuses on
resource allocation among VNF chains. Here, the action space
is continuous — an action is defined as allocating a certain
ratio of resources to a given flow. To increase the learning
speed and robustness of the A3C, the authors adopted the
concept of auxiliary tasks. The intuition behind auxiliary tasks
is to add additional learning goals to the agent that are used
to optimize the feature extraction pipeline in a way that may
be useful for the given task, and can significantly increase
the sample efficiency. The authors in [8] also leverage the
A3C algorithm, but incorporate a few notable changes. First,
they include a graph convolutional network (GCN) to extract
topological features from the substrate network. Second, to
accelerate the convergence of A3C, they introduce an efficient
placement heuristic.

Another popular actor-critic algorithm is deep deterministic
policy gradient (DDPG) which extends ideas of DQN to
continuous action spaces. Twin delayed DDPG (TD3) is an
evolution of DDPG and includes improvements to stabilize
learning and reduce sensitivity to hyperparameter variation.
TD3 is used in [10] and [9]. The authors in [10] focus on
vertical scaling i.e., adding/removing computing resources
allocated to each VNF, according to dynamic traffic fluctuations,
while the authors in [9] consider both horizontal and vertical
scaling. The authors in [10] show that TD3 performs well in
terms of respecting latency constraints, due to more stable
learning.

Proximal policy optimization (PPO) is another approach
which can be applied to both continuous as well as discrete
action spaces, and is used in [11], to scale the number of user
plane VNFs according to the arrival rate of user sessions. PPO
includes a built-in mechanism to avoid changing the training



4

TABLE I
SUMMARY OF RL TECHNIQUES FOR NSSP

Ref. DRL technique State Action Reward
[4] Monte Carlo Resource consumption of VNF

service chain
Increase or decrease VNF resources
by discrete step sizes and offload
VNF

Two-step reward consisting of
throughput to latency ratio of a slice
followed by SLA satisfaction ratio

[5] DQN VNF resource consumption, host
node utilization

Add, remove, or maintain number of
instances for VNF chain

Weighted sum of response time and
resource consumption of VNF chain

[6] DDQN with BDQ Available resources of candidate
paths, slice traffic demands, slice
reconfiguration cost

Select path (sequence of host nodes)
to place entire VNF chain

Weighted sum of slice resource con-
sumption and slice reconfiguration
cost

[7] A3C and auxiliary
tasks

Packet arrival rate to each slice, VNF
resource consumption, queue length
at VNF

Allocate resources to VNFs at each
physical node

Utility function of delay between two
VNFs in a chain

[8] A3C with GCN
augmented with
heuristics

Number of VNFs placed on host
node, host node resource utilization

Index of physical node to place each
VNF of a slice

Utility function of slice acceptance,
resource consumption, and load
balancing

[9] Variant of TD3 VNF resource consumption of each
slice, arrival rate at each VNF

Select VNF location followed by
allocation of resources

Weighted sum of latency (VNF
resizing, deployment, or offloading to
cloud) and cost of VNF deployment

[10]
TD3 Number of users and VNFs in each

slice, energy and latency of each
slice

Scale resources allocated to each
VNF in a slice

Weighted sum of latency, compute,
and energy costs

[11]
PPO Existing and free compute resources,

arrival rate of user sessions
Scale number of user plane VNFs Weighted sum of request blocking

rate and number of VNFs

parameters too much in a single step, leading to more stable
training. The authors in [11] show that PPO learns a stable
policy more consistently than DQN in trading off between the
number of VNFs and blocking rate of requests.

Synthesis. Several works in the existing literature show the
efficacy of using DRL approaches for NSSP. Table I provides
a qualitative comparison of the state-of-the-art in terms of
modeling NSSP as a DRL problem, and the DRL algorithms
used. Recent value-based DRL algorithms [4]–[6] are a good
approach to horizontal resource scaling with discrete action
spaces. However, the NSSP problem includes both continuous
and discrete action spaces, and may be better served by
using action-critic approaches. Most actor-critic approaches
in the literature [7], [8], [10], [11] focus on either scaling
or placement, apart from [9], which considers both. Among
the actor-critic approaches in the literature used to address
NSSP, TD3 [10] is more sample-efficient compared to PPO
[11]. Sample efficiency is crucial in 5G networks, as the reward
signal — generally obtained by monitoring, is associated with
significant overheads. The A3C method [8] is very fast by virtue
of parallelism; however, it suffers from instabilities in learning.
The introduction of auxiliary tasks [7] attempts to address this;
however, designing good auxiliary tasks is problem dependent.
The majority of the existing works also lack a comparison
of the proposed DRL method with traditional methods (e.g.,
optimization approaches) which makes it hard to judge the
extent of benefit DRL provides. One reason for this is the
network scale; optimization-based approaches struggle when
the scale is large, making a comparison on practical large scale
networks difficult.

IV. CHALLENGES IN EFFECTIVE USE OF DRL FOR NSSP

In this Section, we discuss the challenges in effectively
using DRL for NSSP. Table II summarizes the effectiveness of

DRL approaches in the existing literature in addressing these
challenges.

VNF chaining. The next phase of development for 5G and
beyond has seen a push towards cloud native technologies,
where NFs are decomposed into simpler NF services (termed
as VNF components or VNFC) and are implemented using
lightweight virtualization mechanisms (e.g., Linux containers
or Unikernels). A network slice may consist of a chain of
these containerized VNFCs, each of which may have multiple
instances and need to be placed in a particular order. Most
literature considers individual VNFs in a chain to be placed and
scaled independently [4], [6], [9]–[11], or do not consider the
ordering of VNFs in the chain [5], [7], [8]. This has a range of
implications — a) an overloaded VNFC can cause a cascading
domino effect on the subsequent VNFCs in the chain, thus
triggering redundant scaling operations, b) VNFCs belonging
to the same VNF may have frequent communication with each
other, which must be taken into account while performing
placement; otherwise, it may lead to significant communication
overhead. Thus, the DRL approaches need to be augmented
with mechanisms to incorporate VNF chaining information
along with the state representation.

Topology awareness. Apart from the VNF chain structure,
it is also important to consider the physical network topology.
The VNFs in a network slice can be placed at different network
function virtualization infrastructure (NFVI) point-of-presence,
including the central cloud and various distributed edge clouds.
The placement of NFs and the physical network topology
may have several implications in terms of communication
overhead. For example, VNFs which frequently communicate
with each other can be placed at the same node. This reduces
frequent information exchange over the network, thus reducing
communication overhead. A DRL agent usually encodes the
state information in the form of a vector. Most existing DRL
approaches use some type of DNN [5] as the encoder, while



5

TABLE II
ANALYSIS OF EXISTING DRL LITERATURE IN ADDRESSING CHALLENGES FOR NSSP

Ref. Placement Scaling VNF Chaining Topology
Awareness

Constraint
Awareness

Evaluation

[4]
Partial, placement
between different
edge sites

Yes No No Reward shaping using slice throughput
and latency

Emulated VNF testbed based
on Docker

[5]
No Yes Partial, no ordering No Slice latency used as penalty OpenStack NFV testbed

[6]
Yes No No No VNF capacity and link bandwidth

constraints
Simulation

[7]
Fixed Yes Partial, no ordering No Reward shaping using delay and

throughput
Trace-driven simulation

[8]
Yes No Partial, each VNF

in a chain placed
independently

Yes Slice placement failure used as penalty Python-based simulation

[9]
Yes Yes No No QoS violation per VNF used as penalty Simulation

[10]
No Yes No No Reward shaping using weighted sum of

computation, latency, and energy cost
Custom slicing environment
using OpenAIGym

[11]
No Yes No No No Python-based simulation of

container environment

the topology information is in the form of a graph. As such,
they do not make use of the network topology information. In
this regard, graph neural networks (GNNs) can be leveraged to
preserve the topological dependencies by encoding the graph
relationships [8]. GNNs take the topology graph as an input and
generate embedding vectors to capture the essential features
of the topology.

Design challenges. The majority of existing literature on
slice scaling and placement considers either vertical (continuous
action space) or horizontal scaling (discrete action space) in
isolation, and applies the appropriate class of DRL, such as
actor-critic or DQN methods. For more flexible and granular
resource scaling, we need to jointly consider both horizontal
and vertical scaling. This gives rise to hybrid (continuous and
discrete) action space in DRL formulations, which cannot be
addressed by the majority of popular DRL algorithms. Recent
attempts to tackle hybrid action spaces include parameterized
DQN, where the agent selects discrete actions, each associated
with a continuous set of parameters [15].

The state encoders for DRL typically include deep neural
networks with fixed input and output dimensions based on the
states and actions. During training, the dimensions of the input
and output layers usually stay unchanged. This implies that
when the conditions change (e.g., network topology change or
change in length of VNF chain), the input and output layers
need to be changed to reflect the updated state and action
space, and the new model needs to be re-trained from scratch.
Several neural network approaches allow handling variable
input — recurrent neural networks such as long short-term
memory (LSTMs) or gated recurrent units (GRUs) may be
used to work with mixed length sequences, while GNNs may
be used to work with arbitrarily sized graphs. However, further
investigations are required to determine their efficacy in the
context of DRL in terms of data efficiency and generalization
performance.

Constraint awareness. DRL approaches usually consider
random exploration mechanisms for performing policy improve-
ment over time. However, random exploration mechanisms for

scaling and placement decisions may degrade the performance
of a slice enough to violate the SLAs. Thus, it is crucial
to include constraint awareness in DRL, as a violation of
SLAs can make DRL approaches impractical for real-world
implementation. One approach to address this is to consider
constrained RL using mechanisms such as reward-shaping i.e.,
using constraint violations as penalties in the reward function
[4], [7], [10]. In this context, proper design of the reward
function is crucial — too little weightage to penalty terms
can cause SLA violations, while too much weightage can
significantly slow down exploration and policy improvement.
Further, depending on the problem scenario, it may be important
to design the reward function to consider the performance of
the worst case user instead of the average reward.

Evaluation challenges. DRL agents learn by directly in-
teracting with the environment and need a large number of
interactions to collect sufficient information to train deep neural
network structures. This involves the collection of a large
number of network measurements from various segments of
the network such as radio access, edge, and core. Depending
on the number of parameters and measurement frequency, it
may be impractical to send all measurements to the DRL
agent while maintaining reasonable network overhead. The
majority of the literature on NSSP leverage simulations which
do not account for this network overhead [6]–[9]. Additionally,
in practice, it may not be possible to collect certain state
variables related to VNFs due to privacy or security reasons.
Thus, it may be necessary to operate on only a subset of these
measurements and leverage modelling approaches such as the
partially observable Markov decision process (POMDP), in
which the underlying state cannot be directly measured. Further,
the scope of evaluation in most existing work is restricted to
simulations; extensive evaluations are needed using a real-world
testbed to judge the effectiveness of these DRL approaches in
practice. In this regard, the are several open-source projects
(e.g., srsRAN) which can be used to implement a real 5G
testbed; however, to make the application of DRL on top
of these viable, challenges related to monitoring (collecting



6

state information from the environment) and orchestration
(translating DRL actions to actual scaling and placement
decisions) need to be addressed. Another challenge is related
to the high sample complexity of DRL. DRL agents learn
by interacting with the environment, and in practice, the
orchestration interval (time taken for VNF migration and
network device reconfiguration) can be quite high. Thus each
iteration of the DRL algorithm can be time-consuming, leading
to a long convergence time. One approach to address this is to
leverage simulations for generating enough training samples
and fine-tuning the trained model on a real-world testbed.

V. CONCLUSION

Network slice scaling and placement is a fundamentally
challenging combinatorial optimization problem. Previous
approaches in the literature have included integer programming
or custom-designed heuristics; however, recent work has shown
that DRL can prove to be a promising alternative approach.
DRL can use neural networks to learn the underlying structure
and leverage the learned problem structure to search for an
optimal policy. This is in line with exploiting the problem
structure to design custom heuristics. However, DRL automates
the process of finding an optimal policy by adopting a data-
driven approach and avoids the need to manually design and
tune such heuristics. However, DRL is not a panacea — in
this article, we have discussed several challenges that need to
be addressed for the effective use of DRL for network slice
scaling and placement.

REFERENCES

[1] D. Harutyunyan, R. Behravesh, and N. Slamnik-Kriještorac, “Cost-
efficient Placement and Scaling of 5G Core Network and MEC-enabled
Application VNFs,” in Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management (IM), May 2021, pp.
241–249.

[2] J. J. Alves Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Heuristic
for Edge-enabled Network Slicing Optimization using the “Power of
Two Choices”,” in 2020 16th International Conference on Network and
Service Management (CNSM), Nov. 2020, pp. 1–9.

[3] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Computers &
Operations Research, vol. 134, p. 105400, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054821001660

[4] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-Adaptive Sizing
and Placement of NFV Service Chains with Accelerated Reinforcement
Learning,” in Proceedings of the IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 2019, pp. 36–44.

[5] D. Lee, J.-H. Yoo, and J. W.-K. Hong, “Deep Q-Networks based
Auto-scaling for Service Function Chaining,” in Proceedings of the
International Conference on Network and Service Management (CNSM),
2020, pp. 1–9.

[6] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network Slice
Reconfiguration by Exploiting Deep Reinforcement Learning With Large
Action Space,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2197–2211, 2020.

[7] N. Yuan, W. He, J. Shen, X. Qiu, S. Guo, and W. Li, “Delay-Aware NFV
Resource Allocation with Deep Reinforcement Learning,” in Proceedings
of the IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020, pp. 1–7.

[8] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A Heuristically
Assisted Deep Reinforcement Learning Approach for Network Slice
Placement,” IEEE Transactions on Network and Service Management,
2021.

[9] J. S. Pujol Roig, D. M. Gutierrez-Estevez, and D. Gündüz, “Management
and Orchestration of Virtual Network Functions via Deep Reinforcement
Learning,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 304–317, 2020.

[10] F. Rezazadeh, H. Chergui, L. Alonso, and C. Verikoukis, “Continuous
Multi-objective Zero-touch Network Slicing via Twin Delayed DDPG
and OpenAI Gym,” in Proceedings of the IEEE Global Communications
Conference, 2020, pp. 1–6.

[11] H. T. Nguyen, T. Van Do, and C. Rotter, “Scaling UPF Instances in
5G/6G Core With Deep Reinforcement Learning,” IEEE Access, vol. 9,
pp. 165 892–165 906, 2021.

[12] C. Ssengonzi, O. P. Kogeda, and T. O. Olwal, “A survey of deep
reinforcement learning application in 5G and beyond network slicing
and virtualization,” Array, vol. 14, p. 100142, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2590005622000133

[13] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and fast real-time resource slicing with deep dueling neural
networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1455–1470, 2019.

[14] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning
based approach for network slicing,” in 2020 IEEE 28th International
Conference on Network Protocols (ICNP), 2020, pp. 1–6.

[15] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu,
T. Zhang, J. Liu, and H. Liu, “Parametrized Deep Q-Networks Learning:
Reinforcement Learning with Discrete-Continuous Hybrid Action Space,”
arXiv:1810.06394 [cs, stat], 2018.

BIOGRAPHIES

Niloy Saha is a Ph.D. student at the University of Waterloo. He received his
Masters degree in computer science from the Indian Institute of Technology,
Kharagpur, India. His research interests are focused on building next-
generation mobile networks and intelligent algorithms for their orchestration
and management.

Mohammad Zangooei is a Ph.D. student at the Computer Science Department
of the University of Waterloo. He received his Bachelor’s degree in Electrical
Engineering (major) and Computer Science (minor) from the Sharif University
of Technology, Tehran, Iran. His research interests revolve around next-
generation mobile networks, artificial intelligence, and programmable data
planes.

Morteza Golkarifard received his B.Sc., M.Sc., and Ph.D. degrees in computer
engineering from the Sharif University of Technology. He is currently a post-
doctoral fellow at the David R. Cheriton School of Computer Science at the
University of Waterloo. His research interests include 5G networks, NFV, and
SDN.

Raouf Boutaba received his M.Sc. and Ph.D. degrees in computer science
from Sorbonne University in 1990 and 1994, respectively. He is currently a
University Chair Professor and the director of the David R. Cheriton School
of Computer Science at the University of Waterloo. He also holds an INRIA
International Chair in France. He is the founding Editor-in-Chief of IEEE
Transactions on Network and Service Management (2007–2010) and the current
Editor-in-Chief of the IEEE Journal on Selected Areas in Communications.
He is a Fellow of the Engineering Institute of Canada, the Canadian Academy
of Engineering, and the Royal Society of Canada.

https://www.sciencedirect.com/science/article/pii/S0305054821001660
https://www.sciencedirect.com/science/article/pii/S2590005622000133

	Introduction
	DRL for NSSP: Problem Formulation
	DRL for NSSP: Algorithms
	Challenges in Effective Use of DRL for NSSP
	Conclusion
	References
	Biographies
	Niloy Saha
	Mohammad Zangooei
	Morteza Golkarifard
	Raouf Boutaba


