
1

Q-Soft: QoS-aware Traffic Forwarding in
Software-Defined Cyber-Physical Systems

Samaresh Bera, Member, IEEE, Sudip Misra, Fellow, IEEE, Niloy Saha, Student Member, IEEE,
and Hamid Sharif, Fellow, IEEE

Abstract—The next-generation cyber-physical systems (CPS)
with heterogeneous applications have diverse quality-of-service
(QoS) requirements in terms of throughput, end-to-end latency,
and packet drop reliability. To meet such diverse QoS require-
ments, in this paper, we propose a QoS-aware traffic forwarding
scheme in software-defined CPS. The proposed scheme is pre-
sented as a two-stage optimization framework to minimize the
associated costs in traffic forwarding. In the first stage, we aim to
minimize the required number of ‘candidate’ switches for a given
network to minimize network deployment costs. In the second
stage, we design a comprehensive cost function considering end-
to-end delay, flow-rule utilization, and link utilization in the
network. Based on the designed cost function, we formulate
another optimization problem for optimal traffic forwarding
(OTF). As solving OTF is NP-hard, we propose an efficient
greedy-heuristic approach to solve the problem while considering
application-specific QoS requirements. Further, we propose a
packet-tagging method to assist the controller in mitigating rule
congestion at the software-defined networking devices, and hence
improve the overall network performance. Extensive results show
that the proposed scheme minimizes the network delay and QoS-
violated flows by up to 50% and 90%, respectively, compared to
the state-of-the-art schemes.

Index Terms—Software-defined network, Traffic engineering,
Optimization, Packet-tagging, Quality-of-service

I. INTRODUCTION

With the integration of computing, control, and networking
technologies, cyber-physical systems (CPS) are expected to
play a key role in establishing next-generation smart systems.
The inherent technology in CPS abstracts the underlying
mathematical modeling and software development spanning
across multiple domains of computing, control, and network-
ing [1]. Thus, the next generation CPS is expected to include
heterogeneous devices in a single platform. However, the
integration of heterogeneous devices poses interoperability and
networking challenges to the next generation CPS. To address
such challenges in a simplified manner, unified and improved

S. Bera and N. Saha were with the Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, 721302, India, where
the work was done.

S. Misra is with the Department of Computer Science and Engineer-
ing, Indian Institute of Technology, Kharagpur, 721302, India, Email:
smisra@cse.iitkgp.ac.in.

H. Sharif is with the Electrical and Computer Engineering, University of
Nebraska–Lincoln, NE 68588, USA, Email: hsharif@unl.edu.

A preliminary version of this work has been presented in the
IEEE ICC workshop 2018, Kansas City, USA (May 20–24, 2018),
DOI: 10.1109/ICCW.2018.8403550. The authors gratefully acknowledge
the funding support received from SERB/IMPRINT-II (Sanction letter no
SERB/F/12680/2018-2019; IMP/2018/000451, Dt. 25-03-2019) for executing
parts of this work.

software and networking model is required. To this, software-
defined networking (SDN) technology is capable of addressing
such issues and challenges through the simplified and flexible
networking paradigm [2]. Motivated by this, in this work, we
focus on the software-defined traffic forwarding in the core
network of cyber-physical systems.

The inherent features of SDN technology enable real-
time programmability of networking devices while separating
the control- and data- planes from the devices. Thus, the
complexity involved in network management in the SDN-
enabled network is reduced significantly compared to that of
the traditional networks. In SDN-based traffic forwarding, on
receiving a new data-packet, a switch sends a meta-data of
the received data-packet as Packet-In message to the SDN
controller. Then, the switch takes action (forward or drop) on
the received data-packet according to the flow-rule defined
by the controller. However, due to limited memory at the
switches, an existing flow-rule corresponding to active traffic
flows is removed to accommodate a new flow-rule insertion.
This removal triggers repeated requests at the controller by
data-packets corresponding to the ongoing flow, which in-
creases delay and controller overhead. Consequently, it entails
degraded quality-of-service (QoS) in terms of throughput,
end-to-end delay, and packet drop. Recently, Qiao et al.
[3] proposed a random packet forwarding scheme on rule
congestion at SDN switch without generating Packet-In to
the controller to alleviate this issue. Figure 1 summarizes the
scheme proposed in [3] that uses randomization to reduce the
control plane overhead. As depicted in Figure 1, the scheme

S 1

0

3

new flow

opt.
1

opt. 2

opt. 3

S 1 D

0 2

3
42

(b)

Fully occupied switch

Residual rule capacity

Longest route from

source to destination

S 1 D

0 2

3
42

(c)(a)

Fig. 1: The randomly selected port for traffic forwarding lead
to – a) longest path in traffic forwarding; and/or b) another
fully utilized switch

has the following limitations as follows: a) as the outgoing
port for an incoming packet is chosen randomly, the packet
may be forwarded through the longest path, instead of the
shortest one; and b) the randomly chosen switch may also be
fully utilized. In such a case, the packet is further forwarded

Samaresh
Typewritten Text

Samaresh
Typewritten Text

Samaresh
Typewritten Text

Samaresh
Typewritten Text

Samaresh
Typewritten Text

2

to a randomly selected switch. As a result, the controller is
unaware of such traffic flow in the network as Packet-In is
not generated. Moreover, individual QoS requirements of the
flows may be violated due to the randomized forwarding. This
problem is much more worsening in the presence of a huge
number of heterogeneous flows that is obvious in a CPS.

To address the above-mentioned issues, we propose a QoS-
aware traffic engineering scheme for software-defined CPS
that a) focuses on efficient traffic forwarding considering the
QoS requirements of applications, and b) takes into account
the rule-utilization of switches in the network. The proposed
scheme consists of two phases. In the first stage, we formulate
an integer linear program (ILP) to reduce the number of
switches facilitated with hybrid flow-rule capacity [4], termed
as candidate switches, for a given network to minimize the
network deployment cost. In the second stage, we design a
comprehensive cost function that takes into account the end-
to-end delay, flow-rule utilization, and link capacity utilization
in the network. Based on the designed cost function, we
formulate another optimization problem for optimal traffic
forwarding (OTF) for the incoming flows to minimize the
forwarding cost. As solving OTF is NP-hard, we propose
an efficient greedy-heuristic approach to solve the problem
considering the application-specific QoS requirements. Fur-
thermore, we propose a lightweight packet-tagging approach
to proactively inform the SDN controller about rule-congestion
at SDN switches, which is further used to make forwarding
decisions in the future. Experiment results show that network
performance in terms of network delay, packet loss, and QoS-
violated flows can be improved using the proposed scheme
compared to the benchmark schemes. We identify two CPS
use-case scenarios and discuss the potential of the proposed
scheme in addressing the QoS requirements of the systems. In
brief, the contributions in this work are as follows.
• We formulate an optimization problem to minimize the

number of hybrid switches (termed as candidate switches) to
minimize the network deployment cost of a software-defined
CPS.
• We formulate another optimization problem that takes

into account the placement of candidate switches and reduces
the associated forwarding cost in terms of end-to-end delay,
flow-rule capacity, and link capacity utilization. To efficiently
solve the problem within time-bounds, we propose an effi-
cient greedy-heuristic approach for selecting forwarding paths,
while satisfying the QoS requirements of the applications.
•We propose a packet-tagging approach to explicitly notify

the SDN controller about flow-rule congestion so that the
controller can take adequate actions.
• The performance is evaluated using the Mininet network

emulator and the POX SDN controller, and we show that the
network performance can be enhanced significantly compared
to the benchmark schemes — SPD, MRC, RFS, and Sway.

We organize the rest of the paper as follows. Section II dis-
cusses the existing schemes while identifying the limitations.
Section III presents the proposed dynamic traffic engineering
scheme in software-defined CPS. Section IV reports the ex-
periment results. Two CPS use-case scenarios are presented
in Section V to show the suitability of the proposed scheme

in practical scenarios. Finally, in Section VI, we conclude
the paper while highlighting the limitations of the proposed
scheme and some future research directions.

II. RELATED WORK

In this section, we review the existing traffic engineering
schemes in SDN and CPS. Recent studies [2], [5] showed
that software-defined networking aspects are useful to address
the issues and challenges in building CPS. Further, several
schemes [3], [4], [6]–[15] also focused on traffic forwarding
in SDN. For example, the benefits of SDN-based traffic
engineering are studied in [7]. With the presence of a global-
view of the network, the SDN controller can take optimal
decisions on traffic forwarding. To deploy SDN-based traffic
forwarding, traditional networking devices need to be replaced
by SDN switches. However, it is cost-expensive to migrate the
entire network with SDN switches. Caria et al. [6] proposed an
algorithm to determine the optimal number of SDN switches
considering the associated deployment cost. Thus, the authors
showed that the network capacity up-gradation can be mini-
mized, which, in turn, minimizes the deployment cost.

TABLE I: Summary of existing works

Work Contribution(s) Remarks

Qiao et
al. [3]

Randomized traffic
forwarding
on detecting rule
congestion

May lead to QoS
violation of flows

Katta et
al. [4]

Use of hybrid switches for
rule placement

Increased CAPEX and
may lead to increased
delay due to hardware-
software
dependency

Saha et
al. [14]

Traffic-aware QoS routing
for IoT application

Considered unlimited
flow-rule space available
at switches

Bhatia et
al. [8]

Segment routing to
avoid rule congestion

May lead to QoS
violation and security
threat to the network

Segment routing is another important aspect in traffic
engineering by simplifying the forwarding mechanisms. In
particular, a source node can specify a unicast forwarding
path using the segment routing rather than specifying the
shortest path, through which the packet will traverse. Au-
thors in [8]–[10] proposed a segment routing-based traffic
engineering scheme in SDN-enabled networks in which an
architecture for segment routing is also presented. In segment
routing, the SDN switches forward a packet to its next-hop
switch without sending Packet-In to the controller. Thus,
frequent rule placement at the switches can be avoided. Such
an approach is useful while the rule capacity of an SDN
switch is nearly/completely utilized. However, as mentioned in
Section I, such a forwarding scheme may lead to an increased
delay in traffic forwarding.

Concurrently, Qiao et al. [3] proposed a way-point routing
scheme in the presence of congested switches with active
flow-rules. In such a scenario, the congested switch forwards
the traffic to a randomly selected neighbor without gener-
ating Packet-In to the controller. Consequently, the flow-

3

TABLE II: List of symbols

Symbol Description
S Set of switches in the network
L Set of links between switches
C Set of candidate switches
F Set of flows
Rmax

i Rule capacity of a switch i ∈ S
Rutil

i Utilized rule capacity of a switch i ∈ S
Lutil
i,j Utilized link capacity of a link (i, j) ∈ L

Lmax
i,j Link capacity of a link (i, j) ∈ L

wj integer variable
βi,j binary variable
di,j Delay of a link (i, j) ∈ L
df Delay requirement of a flow f ∈ F
Φf

i,j Cost for routing a flow f over link (i, j)

rules at the switch for active flows are not replaced by the
new traffic. Thus, message overhead for rule placement is
avoided. Recently, Saha et al. [14] proposed a QoS-aware
routing scheme in SDN while considering the requirements
of IoT applications. They categorized the IoT flows from two
aspects — delay-sensitive and loss-sensitive. Consequently, the
authors proposed a greedy heuristic to forward such traffic,
while considering the individual requirements of the IoT flows.

Table I presents a detailed comparison of the existing works
that focused on QoS-aware traffic forwarding in SDN. We see
that the existing schemes may not be suitable for differentiated
service provisioning in a software-defined CPS integrated with
heterogeneous devices and applications.

III. QSOFT: QUALITY-AWARE TRAFFIC FORWARDING

Let there be an SDN-enabled network in a CPS denoted
as a directed graph G = (S,L), where S and L denote the
set of SDN switches and set of links between the switches,
respectively. Further, S and L are denoted as follows: S =
{S1, S2, . . . , Sn} and L = {(i, j)|(i, j) ⊂ S × S, i 6= j}. The
list of symbols used in this work is shown in Table II.

Candidate Switch: We denote a switch as hybrid or can-
didate switch (CS) if it has the provision of both hardware
and software packet processing facilities. Therefore, such a
combination of software and hardware processing provides
more flexibility and large rule-space [4]. Although hybrid
switches offer increased rule space, they may be relatively ex-
pensive. Consequently, the objective is to minimize the number
of candidate switches in the network without degrading the
network performance. Figure 2 presents the schematic view
of the architecture of a CS comprising of both hardware and
software facilities. The software part can be placed at the
switch itself or in a remote place depending on the network
deployment. Further, candidate switch master acts as an agent
and controls the flow-rule placement and Packet-In messages
at both the software and hardware switches. We limit our
discussion on the candidate switch architecture in this paper
(details can be found in [4]).

Controller architecture: Figure 3 presents the proposed
SDN controller architecture with data-plane. The Switch Man-

TCAM in Hardware Switch

Candidate Switch Master

SDN Controller

Elastic software

switches

Control Path

Data Path

SW1 SW2 SW3

Fig. 2: Candidate switch architecture

Packet-In Handler Packet-Tag Identifier

Topology Manager

Network Statistics Collector

Q-Soft Module Flow-Rule Manager

Switch Manager OpenFlow API Link Discovery POX Core Services

POX Module Applications

Candidate Switch Master

H-SW H-SW H-SW H-SW H-SW

C
o

n
tr

o
l
P

la
n

e

D
a
ta

P
la

n
e

Fig. 3: Controller architecture used in this work

ager is connected to the Candidate Switch Master and the
general switches present in the network. The Packet-In
Handler module collects the OpenFlow Packet-In messages
sent from the data-plane. The Q-Soft module determines the
forwarding path for traffic forwarding while considering the
application-specific requirements (proposed in Section III-B).
The Flow-Rule Manager deploys the flow-rules according to
the forwarding path decided by the Q-Soft module. The Packet-
Tag Identifier module is used to identify the rule-congestion
in the network (proposed in Section III-C). The default active-
probing method is used to collect network statistics.

A. Candidate Switch Selection

The candidate switch (CS) provides more flexibility in
packet processing in the network. Therefore, the general pur-
pose switches need to be replaced by the CSs in order to have
increased network flexibility. However, cost of such hybrid
switches is more compared to the general switches. Therefore,
for a given network G(S,L), the objective is to minimize the
number of switches from S that need to be designed as CS.
We denote the set of CS as C = {C1, C2, . . . , Ck}, where
k ∈ [1, |S|] and C ⊆ S. Mathematically,

Minimize
|S|∑
j=1

wj

subject to∑
j

βi,j ≥ 1,∀i ∈ S, (1)

βi,j ≤ wj ,∀i ∈ S and j ∈ C, (2)

where wj ∈ Z>=0 is an integer variable and it captures the
number of switches selected as CSs. Equation (1) represents
that every switch has at least one CS in its one-hop distance.
Equation (1) is used as a trade-off between the cost of CS and

4

the control overhead in terms of Packet-In in the network.
Therefore, we consider the distance between a switch and CS
as one-hop in this work, but it is user-defined. The binary
variable βi,j denotes the availability of a CS, j ∈ C, from
another switch, i ∈ S. Mathematically,

βi,j =


1, if there exists a link between

switch, i ∈ S, and CS, j ∈ C
0, Otherwise.

(3)

Equation (2) restricts the number of switches to be selected
as CS. The formulated optimization problem is an integer
linear program (ILP). The optimization problem is solved
using the GLPK solver (https://www.gnu.org/software/glpk/).
It is noteworthy that this problem is solved once during the
implementation stage and does not change dynamically over
time.

B. Optimal Traffic Forwarding (OTF)

As discussed in Section I, typically, a CPS is comprised
of heterogeneous devices. Therefore, the network carries het-
erogeneous traffic generated from applications that can be
event-driven (e.g., smart alarm system), low-rate (e.g., preci-
sion agriculture), and have different bandwidth requirements.
Moreover, packet loss- and delay-guaranteed data delivery are
another two important quality of service (QoS) requirements
while forwarding traffic through the network [14]. Conse-
quently, deciding optimal policies considering multiple metrics
poses significant challenges to the controller while forwarding
incoming traffic in the network. Consequently, we design a
cost function with the following properties.

∂Φ(R,L, d)

∂R
≥ 0,

∂Φ(R,L, d)

∂L
≥ 0, and

∂Φ(R,L, d)

∂d
≥ 0,

where R is associated with rule-space utilization at the for-
warding switch. L and d denote link utilization and link delay
between two forwarding switches, respectively. We introduce
a binary variable xfi,j as follows:

∑
j∈N(i)

xfi,j =

{
1, if switch i is included to forward flow f

0, Otherwise,

where j ∈ N(i) denotes the neighboring switches of switch j.
Accordingly, the link- and rule-space utilization are calculated
as:

Lutil
i,j =

∑
f∈F

bfxfi,j , and Rutil
i =

∑
f∈F

∑
j∈N(i)

xfi,j , (4)

where bf is bandwidth requirement of flow f .
Consequently, we formulate the cost function considering

the above-mentioned parameters as follows:

Φf
i,j(R,L, d) = α

Rutil
i

Rcap
i

+ β
Lutil
i,j

Lcap
i,j

+ γ
di,j
df

, i, j ∈ S ∧ i 6= j

(5)
where α, β, and γ are user-defined constants to consider
the relative importance between the rule-utilization, link-
utilization, and link delay, respectively. Rutil

i denotes the rule-
space utilization at switch i. Lutil

i,j and di,j denote the link

utilization and link delay between the switches i and j, where
i 6= j. Further, Rcap

i presents the rule capacity of the switch
i. Lcap

i,j is the link capacity between the switches i and j.
The term df denotes the allowable delay associated with flow
f . Thus, for a given network and cost of a link to forward
a flow, the objective is to reduce the forwarding cost for all
flows in the network while considering network capacity and
QoS requirements of flows. Mathematically,

Minimize
∑
f∈F

∑
e∈L

Φf
i,jx

f
i,j

subject to

xfi,j ∈ {0, 1}, ∀i, j ∈ S (6)

Lutil
i,j ≤ L

cap
i,j , ∀i, j ∈ S (7)

Rutil
i ≤ Rcap

i , ∀i ∈ S (8)∑
di,jx

f
i,j ≤ d

f , ∀i, j ∈ S (9)

where Φf
i,j denotes the cost of a link (i, j) while forwarding a

flow f , and xfi,j denotes whether the link (i, j) is selected to
forward the flow f . Therefore, our objective is to minimize the
overall cost for forwarding the flows in the network. Equation
(6) captures the selection of the link (i, j) to forward the
flow f . Equation (7) ensures that the link utilization must be
less than or equal to the total capacity of the link. Equation
(8) preserves the rule capacity constraint of a switch. Finally,
Equation (9) denotes that the total delay incurred by the flow
over the links (i, j) from source to destination is within the
allowable delay associated with the flow.

1) Greedy Heuristic for Traffic Forwarding: The above-
formulated ILP is NP-hard in general [16]. Therefore, we pro-
pose a greedy-heuristic approach to forward the traffic in the
network. Algorithm 1 presents the proposed greedy algorithm
for traffic forwarding while considering the associated cost
presented in Equation (5). For a given flow, we use Yen’s K-
Shortest path [17] to get all possible paths that satisfy the flow
requirements, as presented in 3. In Step 4, flow-requirement is
checked to maintain QoS in traffic forwarding. Finally, the path
with minimum cost is chosen from the list of qualified paths,
which is presented in Step 8. It is noteworthy that the proposed
algorithm forwards the flows one-by-one in the network in an
online fashion. The time complexity of the proposed greedy
approach (presented in Algorithm 1) is analyzed. The for loop
in Step 1 runs |F| times for total number of flows. Further, we
use Yen’s K-shortest path algorithm (refer to Step 5), which
is the most time-expensive operation in the proposed greedy
approach. The time complexity to get K-shortest path using
Yen’s algorithm is O(K|S|(|L|+ |S| log |S|)). Therefore, the
total time complexity of the proposed greedy algorithm is
O((|F|)× (K|S|(|L|+ |S| log |S|)). It is noteworthy that the
proposed greedy approach runs in polynomial time.

To show the efficacy of the proposed heuristic in solving
the traffic forwarding problem, we present empirical results
comparing the heuristic to the ILP formulated in Section III-B.
We create a network with 12 nodes using the Barabasi-Albert
scale-free topology. Flows are generated using the values pre-
sented in performance evaluation (refer to Table III). Figure 4

https://www.gnu.org/software/glpk/

5

Algorithm 1 Greedy algorithm for traffic forwarding (OTF)
Inputs:

Graph, G; Flow f with requirements; Maximum rules at
a switch Rcap; Values for constants α, β, and γ

Output:
Forwarding path pf with associated cost Φf on which flow
f can be routed

1: Compute path for flow f using GET-PATH(s, t, f)
2: function GET-PATH(s, t, f)
3: for path in K-SHORTEST-PATHS(s, t) do
4: if CHECK-REQUIREMENT(path, f) then
5: Calculate cost Φf according to Equation (5)
6: Θf ← (path,Φf)

7: if Θf then
8: Choose the minimum cost path pf from Θf

9: return path pf

10: else
11: Flow f is considered as QoS-violated

. No QoS path found
12: function CHECK-REQUIREMENT(path, f)
13: if CHECK-LINK-DELAY and CHECK-RULE-CAPACITY

and CHECK-LINK-CAPACITY then
14: return True
15: else
16: return False

 0.3

 0.6

 0.9

 1.2

20 25 30 35 40

A
v

er
ag

e
C

o
st

 (
u
n

it
)

Number of Flows

Average Cost

ILP
Greedy

 10

 20

 30

 40

20 25 30 35 40

Q
o
S

 V
io

la
ti

o
n
 (

%
)

Number of Flows

QoS Violation

ILP
Greedy

Fig. 4: Comparison between the optimal solution and the
proposed greedy approach

represents the performance comparison between the ILP and
the proposed greedy approach for traffic forwarding. We see
that the proposed scheme gives competitive results to the ILP
in terms of cost and QoS-violated flows. Further, it is also
noteworthy that the computation time increases exponentially
in the case of ILP with an increasing number of flows in the
network.

C. Tagging the Packet-In Message

Typically, in SDN, rule congestion leads to frequent rule
replacement at the switches, which, in turn, increases the
end-to-end delay in packet delivery. A modified version of
the OpenFlow protocol is used to notify the SDN controller
about the rule congestion. Each switch uses the modified
Packet-In message on detecting rule congestion, as shown
in Figure 5. We follow the OpenFlow specification [18] to
achieve this. In addition to the standard fields, another name
is used as f-tag under the reason field, where the value
of the f-tag is set to 0X03 to notify the controller about

data

header

buffer_id

total_length reason table_id

cookie

match

pad

32 bits

Field Name Value

reason NoMatch 0X00

 Action 0X01

 InvalidTTL 0X02

 f-tag 0X03

f-tag field is added in the reason field

to notify the controller that the rule-

capacity of the switch is fully utilized

Fig. 5: Modified Packet-In message used in packet-tagging
method

TABLE III: Simulation Parameters

Parameter Value
Network Topology AttMpls and Goodnet [20]
Number of switches 25 (AttMpls) and 17 (Goodnet)
Number of links 57 (AttMpls) and 31 (Goodnet)
Number of flows 100 – 300
Bandwidth requirement 0.20 – 0.40 kbps
Packet size 94 – 699 bytes [21]
Active volume 142 – 27716 bytes [21]
Mean traffic rate 562 – 516,540 bps [21]
Active flow time 1 – 34 s [21]
[α, β, γ] [0.33, 0.33, 0.33]

rule congestion at the switch. Consequently, on receiving the
rule congestion notification, the controller takes an adequate
decision to alleviate the congested switch. We believe that
the packet-tagging method can be easily integrated into the
existing SDN systems that utilize the OpenFlow protocol.

IV. PERFORMANCE EVALUATION

The performance of the proposed scheme, called Q-Soft, is
evaluated using the POX controller and the Mininet network
emulator [19]. We consider two real-life network topologies
— AttMpls and Goodnet — from the Internet topology Zoo
[20] to consider both dense and relatively sparse network
topologies. To generate heterogeneous traffic with diverse QoS
requirements, we used D-ITG traffic generator according to the
properties mentioned in [21]. The experiments were conducted
in a Google Cloud (https://cloud.google.com/) instance config-
ured with Intel Skylake processor and 7.5GB RAM. Table III
presents the parameters and their values used to evaluate the
performance.

We use different performance metrics such as end-to-end
delay, average packet drop, throughput, number of Packet-In
messages, and QoS-violated flows. The results for the end-
to-end delay, packet drop, and throughput are measured us-
ing the utilities of D-ITG available in the Mininet network
emulator. On the other hand, the number of Packet-In and
QoS-violated flows in traffic forwarding are measured at the
controller-end according to the Packet-In handler and Q-Soft
module. Further, we compare the proposed scheme, Q-Soft,
with the existing traffic forwarding schemes — shortest path
delay (SPD) [22], minimum occupied rule capacity (MRC) (as
discussed in [23]), randomized forwarding scheme (RFS) [3],
and QoS-routing scheme (Sway) [14]. In SPD, the traffic is
forwarded through the path which incurs less delay. On the

https://cloud.google.com/

6

other hand, in MRC, traffic is forwarded through the switches
in which the minimum number of flow-rules is installed.
Further, in the case of RFS, a switch forwards incoming traffic
randomly to one of its outgoing ports without generating
Packet-In to the controller when its rule-capacity is fully uti-
lized. However, when the rule-capacity is under-utilized, RFS
follows the standard OSPF-based traffic forwarding approach.
In Sway, the SDN controller installs flow-rules based on the
type of applications – delay-sensitive and loss-sensitive.

A. Results and Discussion

We analyze the obtained results and compared them with
the existing scheme as follows.

1) Candidate Switch Selection: As mentioned in Sec-
tion III-A, the proposed scheme aims to select the optimal
number of candidate switches in the network. Consequently,
we determine the minimum number of candidate switches in
the network by solving the ILP, as mentioned in Section III-A.
Figure 6 presents the AttMpls and Goodnet network topologies
with candidate switches in red color. From the figure, we see
that a small number of switches are required to be associated
with software switches for both the network topologies. Ac-
cordingly, we set up the network and conduct the experiment to
obtain results related to network performance. It is noteworthy
that the software switches are placed locally in the experiment.

01

2
34

5

67

8 9

1011

12 13
14

1516

17

18

19
20

2122

23

24

(a) AttMpls topology

0

1

2

3

4

5

6

7 8

9

10
11

12

13
14

1516

(b) Goodnet topology

Fig. 6: Network topology with candidate switches

2) End-to-End Delay: Delivery of the flows within the
desired time-bound is a crucial factor. In the proposed scheme,
Q-Soft, we aim to minimize the overall end-to-end delay
in traffic forwarding. Figure 7 presents the average packet
delivery delay with varying number of flows for AttMpls and
Goodnet network topologies. We see that Q-Soft is capable
of minimizing the end-to-end delay by 34%, 41%, 50%, and
40% compared to the SPD, MRC, RFS, and Sway schemes, re-
spectively. In the case of Q-Soft, the controller determines the
forwarding path in which incoming traffic can be forwarded to
the destination while considering associated delay-bound. Fur-
ther, the proposed cost-based path selection mechanism avoids
congested switches in the network to minimize the flow-setup
delay. Therefore, the overall delay incurred by the flows is
minimized using the proposed scheme, Q-Soft. In contrast,
SPD chooses the links with a minimum delay to forward
the traffic to the destination. Therefore, for a given source-
destination pair, the same path is chosen irrespective of the
characteristic of the flows. As a result, the switches in the path
are congested and flow-rules are required to be replaced with
new ones upon receiving new flows, which, in turn, increases

 400

 600

 800

 1000

100 150 200 250 300

D
el

ay
 (

m
s)

Number of Flows

AttMpls Topology

 200

 400

 600

 800

100 150 200 250 300

D
el

ay
 (

m
s)

Number of Flows

Goodnet Topology

Q-Soft SPD MRC RFS Sway

Fig. 7: Average delay using different flows

the flow-setup delay. In MRC, a path consists of switches that
are minimally occupied. Therefore, links with higher delay
may be selected, which, in turn, increases the packet delivery
delay. On the other hand, in RFS, due to random selection
of outgoing ports upon full utilization on flow-rule space, the
end-to-end delay increases in the network. Finally, in Sway,
the delay is not taken into account while forwarding loss-
sensitive flows, which, in turn, increases the average network
delay compared to Q-Soft. It is also noteworthy that Sway
was designed for low-rate traffic. Therefore, the average delay
using Sway suddenly increases with a large number of flows
in the network.

It is noteworthy that due to the sparse nature of the Goodnet
topology, forwarding paths for the delay- and loss-sensitive
flows are almost similar for a given pair of source and
destination. Therefore, the average delay in the Goodnet net-
work topology is relatively lower than the AttMpls topology.
However, the proposed scheme, Q-Soft, always outperforms
the existing schemes — SPD, MRC, RFS, and Sway — in terms
of end-to-end delay. The delay increases with an increasing
number of flows in the network. This is due to more number
of Packet-In, increased rule-capacity utilization, and more
number of queued packets at the switches. However, it is
always better to use the proposed scheme than the existing
schemes.

3) Packet Drop: Concurrent to the delay, flows are also
loss-sensitive, which necessitates the minimization of packet
drop in the network. Figure 8 presents the packet drop that
occurred in the network. From the figures, it is evident that
Q-Soft is capable of minimizing the packet drop by 40%,
45%, 57% and 54% (AttMpls topology), and 44%, 35%,
63% and 45% (Goodnet topology) compared to SPD, MRC,
RFS, and Sway schemes, respectively. In Q-Soft, the packets
are forwarded considering the residual link bandwidth, rule
capacity at the switches, and link delay. Therefore, congestion
at a particular link or switch is avoided using the proposed
scheme. Hence, a fewer number of packets are queued at
the switches, which, in turn, reduces the number of packet
drops. In contrast, in SPD, the number of queued packets
is increased due to the shortest-path delay mechanism. This
leads to increased packet drop. Similarly, in MRC, the link
delay and bandwidth are not considered while forwarding
incoming packets. Hence, more packets are dropped due to
insufficient link capacity to forward the incoming packets. On
the other hand, in RFS, packets are forwarded through wrong
outgoing ports due to a random forwarding scheme when

7

 5

 10

 15

 20

100 150 200 250 300

P
ac

k
et

 d
ro

p
 (

%
)

Number of Flows

AttMpls Topology

 5

 10

 15

 20

 25

100 150 200 250 300

P
ac

k
et

 d
ro

p
 (

%
)

Number of Flows

Goodnet Topology

Q-Soft SPD MRC RFS Sway

Fig. 8: Average packet drop using different flows

 4

 6

 8

 10

100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of Flows

AttMpls Topology

 4

 6

 8

 10

100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of Flows

Goodnet Topology

Q-Soft SPD MRC RFS Sway

Fig. 9: Average throughput using different flows

the rule capacity is fully utilized. Consequently, the packets
forwarded to the wrong outgoing ports are not able to reach the
destination. This leads to more packet drops in the network.
In Sway, the loss is not taken into account while forwarding
delay-sensitive flows in the network and vice-versa, which, in
turn, increases the average packet drop. Further, the packet
drop increases with an increasing number of flows in the
network due to the resource-constrained nature of the network.
However, the proposed scheme always performs better than the
existing schemes.

4) Network Throughput: Figure 9 presents throughput ob-
tained using the proposed and existing schemes. It is observed
that the proposed scheme, Q-Soft, provides higher throughput
compared to the existing schemes — SPD, MRC, RFS, and
Sway. In Q-Soft, the cost-based traffic forwarding scheme
ensures the packets to be forwarded in the network for which
link utilization is less. Consequently, the throughput using
Q-Soft is always better than the existing schemes for both
the network topologies. Further, in Sway, bandwidth utilization
was not considered while forwarding traffic in the network.
This leads to decreased network throughput although loss and
delay requirements for loss- and delay-sensitive applications
are considered, respectively.

5) QoS-violated Flows: We present the QoS-violated flows
in the network with the different number of flows, as depicted
in Figure 10. We check the QoS criteria of the forwarded flows
at the controller-end. It is evident from the figure that Q-Soft
is capable of reducing the QoS-violated flows by 82%, 72%,
89%, and 84% compared to SPD, MRC, RFS, and Sway schemes,
respectively. In SPD and MRC, due to insufficient link capacity
or rule capacity, required QoS cannot be ensured. Similarly,
due to the randomly chosen outgoing ports, packets experience
a higher delay (refer to Figure 7), which, in turn, increases the
percentage of QoS-violated flows in the network. Further, in

 0

 10

 20

 30

100 150 200 250 300

Q
o

S
 v

io
la

ti
o

n
 (

%
)

Number of Flows

AttMpls Topology

 10

 20

 30

 40

100 150 200 250 300

Q
o

S
 v

io
la

ti
o

n
 (

%
)

Number of Flows

Goodnet Topology

Q-Soft SPD MRC RFS Sway

Fig. 10: QoS violation using different flows

 1000

 2000

 3000

 4000

 5000

 6000

100 150 200 250 300

P
ac

k
et

-I
n

 (
#
)

Number of Flows

AttMpls Topology

 1000

 2000

 3000

 4000

100 150 200 250 300

P
ac

k
et

-I
n

 (
#
)

Number of Flows

Goodnet Topology

Q-Soft SPD MRC RFS Sway

Fig. 11: Number of Packet-In using different flows

the case of high-rate traffic in the network, the percentage of
QoS-violated flows using Sway is also increased compared to
Q-Soft.

6) Number of Packet-In: Finally, we present the number of
Packet-In messages to show the network control overhead
in Figure 11. It is observed that the proposed scheme, Q-Soft,
incurs moderate number of Packet-In compared to the exist-
ing schemes — SPD, MRC, RFS, and Sway. In Q-Soft, after re-
ceiving a Packet-In, the controller computes the optimal path
for traffic forwarding and places the flow-rule at the switch,
as mentioned in Algorithm 1. During the path computation,
the switch keeps on sending the Packet-In associated with
the same flow until a matched rule is found at the flow-table.
Due to this reason, the number of Packet-In increases using
the proposed scheme. This is also applicable to SPD and MRC
schemes. However, once a flow-rule associated with the flow
is installed at the switch, all the queued packets (related to
the same flow) are processed. On the other hand, in RFS, a
switch forwards the traffic to a randomly selected outgoing
port without generating Packet-In on rule congestion, which,
in turn, reduces the network control overhead. Similar to MRC
and SPD, due to the absence of software switch support, more
number of Packet-In is generated in the Sway scheme.

To summarize, we see that the proposed scheme, Q-Soft,
improves the network performance significantly compared to
the existing schemes — SPD, MRC, RFS, and Sway, while
preserving required QoS requirements of flows.

V. USE-CASE SCENARIO: PRACTICAL ASPECTS

We briefly discuss two CPS scenarios in which the proposed
SDN-based traffic engineering would be useful to enhance the
network performance while fulfilling the requirements of the
flows.
• Traffic forwarding in SDN-based smart grid system: In a

smart grid, consumers’ energy consumption data is reported

8

to meter data management systems (MDMS). Further, the
collected information at the MDMS is forwarded to the data
center network through the backbone network for further
processing and intelligent decision making in energy manage-
ment. Thus, some applications, such as monitoring real-time
energy consumption and blackouts, require guaranteed data
delivery in real-time, i.e., the applications are delay-sensitive.
Whereas a few other applications, such as billing and making
business policy, require the information to be delivered with
a minimum loss, i.e., the applications are loss-sensitive. In
the proposed scheme, we aimed to address such issues while
forwarding traffic in the network. Moreover, experiment results
show that the proposed scheme is beneficial to minimize
network delay and loss while ensuring QoS-guaranteed data
delivery. Therefore, we believe that the proposed scheme
would be beneficial to address the fundamental issues present
in the smart grid communication network.
• QoS-guaranteed traffic forwarding in SDN-based health-

care systems: Another important CPS system is healthcare
systems. In a healthcare system, major information is delay-
sensitive, hence, it requires time-bound data delivery. The pro-
posed scheme is capable of addressing this issue by employing
optimal traffic forwarding mechanism. Further, the experiment
results show that end-to-end delay and QoS violated flows can
be reduced significantly using the proposed scheme.

VI. CONCLUSION

In this paper, we proposed a dynamic traffic engineering
scheme intending to maximize overall network performance.
The proposed scheme consists of two phases — candidate
switch selection and optimal path selection. In the candidate
switch selection phase, we determined the set of SDN switches
required to be associated with software switches to minimize
rule congestion. In the optimal path selection phase, we
formulated a cost function for traffic forwarding, so that overall
cost is minimized. We used the Mininet emulator and POX
SDN controller to evaluate the performance of the proposed
scheme. It is observed that the proposed scheme enhances the
network performance compared to the existing schemes.

We observed that additional Packet-In messages are gen-
erated during the path computation phase which leads to an
increased number of Packet-In using the proposed scheme.
This may be addressed by improved data plane packet pro-
cessing techniques such as P4. Further, the performance of
the proposed schemes depends on the network topology, flow-
rule capacity of the candidate switches, and network resources.
We plan to address these limitations of the proposed scheme
as a future extension of this work.

REFERENCES

[1] K.-D. Kim and P. R. Kumar, “Cyber-Physical Systems: A Perspective
at the Centennial,” Proc. IEEE, vol. 100, pp. 1287–1308, May 2012.

[2] E. Molina and E. Jacob, “Software-defined networking in cyber-physical
systems: A survey,” Computers and Electrical Engineering, vol. 66,
2018.

[3] S. Qiao, C. Hu, X. Guan, and J. Zou, “Taming the Flow Table Overflow
in OpenFlow Switch,” in Proc. of the ACM SIGCOMM, Florianopolis,
Brazil, Aug. 2016, pp. 591–592.

[4] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks,” in
Proc. of the Symposium on SDN Research (SOSR), no. 6, CA, USA,
Mar. 2016.

[5] S. Bera, S. Misra, and N. Saha, “DynamiTE: Dynamic Traffic Engineer-
ing inSoftware-Defined Cyber Physical Systems,” in Proc. of the ICC
Workshop, no. 6, Kansas City, USA, 2018.

[6] M. Caria, A. Jukan, and M. Hoffmann, “A performance study of
network migration to SDN-enabled Traffic Engineering,” in Proc. of
IEEE GLOBECOM, Dec. 2013, pp. 1391–1396.

[7] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic Engineering in
Software Defined Networks,” in Proc. of the IEEE INFOCOM, 2013,
pp. 1–9.

[8] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized net-
work traffic engineering using segment routing,” in Proc. of the IEEE
INFOCOM, 657–665, Apr–May 2015.

[9] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in Proc. of IEEE GLOBECOM,
Dec. 2015, pp. 1–6.

[10] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic
Engineering with Segment Routing: SDN-Based Architectural Design
and Open Source Implementation,” in Proc. of European Workshop on
Software Defined Networks (EWSDN), Nov. 2015, pp. 111–112.

[11] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. of the ACM SIGCOMM workshop on HotSDN, Hong-
Kong, China, Aug. 2013, pp. 19–24.

[12] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in Proc.
of the ACM SIGCOMM, Hong-Kong, China, Aug. 2013, pp. 27–39.

[13] S. Bera, S. Misra, and M. S. Obaidat, “Mobility-Aware Flow-Table
Implementation in Software-Defined IoT,” in Proc. of the IEEE GLOBE-
COM, Dec. 2016, pp. 1–6.

[14] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware QoS Routing
in Software-Defined IoT,” IEEE Trans. Emerg. Topics Comput., 2018,
DOI: 10.1109/TETC.2018.2847296.

[15] A. Kushwaha, S. Sharma, N. Bazard, A. Gumaste, and B. Mukherjee,
“Design, Analysis, and a Terabit Implementation of a Source-Routing-
Based SDN Data Plane,” IEEE Syst. J., vol. 15, no. 1, pp. 56–67, 2021.

[16] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel.Areas Commun., vol. 14, no. 7,
pp. 1228–1234, 1996.

[17] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[18] OpenFlow Switch Specification, Version 1.3.3, Open Networking Foun-
dation, Sept. 2013.

[19] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-defined Networks,” in Proc. of the ACM
SIGCOMM Workshop Hot Topics in Networks, 2010.

[20] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE J. Sel.Areas Commun., vol. 29, no. 9, pp.
1765–1775, 2011.

[21] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and Classi-
fying IoT Traffic in Smart Cities and Campuses,” in Proc. of the IEEE
INFOCOM Workshop, 2017, pp. 559–564.

[22] J. M. Llopis, J. Pieczerak, and T. Janaszka, “Minimizing Latency of
Critical Traffic through SDN,” in Proc. IEEE Int. Conf. Networking,
Architecture and Storage, 2016, pp. 1–6.

[23] H. Li, P. Li, and S. Guo, “MoRule: Optimized rule placement for
mobile users in SDN-enabled access networks,” in Proc. of the IEEE
GLOBECOM, TX, Dec. 2014, pp. 4953–4958.

	Introduction
	Related Work
	QSoft: Quality-Aware Traffic Forwarding
	Candidate Switch Selection
	Optimal Traffic Forwarding (OTF)
	Greedy Heuristic for Traffic Forwarding

	Tagging the Packet-In Message

	Performance Evaluation
	Results and Discussion
	Candidate Switch Selection
	End-to-End Delay
	Packet Drop
	Network Throughput
	QoS-violated Flows
	Number of Packet-In

	Use-Case Scenario: Practical Aspects
	Conclusion
	References

