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Abstract—In this paper, we propose a dynamic controller
assignment scheme while considering flow-specific requirements,
with an aim to minimize controller response time in software-
defined networks (SDN). We adopt the concept of FlowVisor,
in which a virtualized platform acts as a manager between
control- and data planes of SDN architecture. The proposed
scheme consists of two phases – adaptive window selection
and controller assignment. In the window selection phase, the
manager determines time to wait before incoming flows can be
assigned to controllers in adaptive manner. Based on the adaptive
window size, the flows are assigned to the controllers in the
second phase. We use dynamic stable-matching game to assign
flows to controllers, while defining their preference lists. The
extensive simulation results show that the proposed scheme is
capable of minimizing controller response time by 31%, 39%, and
37% compared to the state-of-the-art schemes – simple stable-
matching (SM), static assignment (Static), and minimum quota
processing (MQP), respectively. Further, the proposed scheme
also reduces the percentage of QoS violated flows in the network
by 72%, 73%, and 74% compared to SM, Static, and MQP,
respectively.

Index Terms—Software-defined networks, Controller assign-
ment, Stable matching, Adaptive window selection

I. INTRODUCTION

The advent of software-defined networks (SDN) provides
flexible and efficient network management in a centralized
manner, while decoupling the control-plane from traditional
forwarding devices (such as switches and routers) [1], [2].
Thus, a centralized controller at the control-plane controls
the forwarding devices while utilizing the global view of the
network. On receiving a flow, i.e., packet, a switch sends a
Packet-In to the controller, which decides the adequate ac-
tion(s) to be taken by the switch. The decision making process
involves a delay, known as flow-setup delay, that depends
on the processing capacity of the controller and incoming
flow-requests from other switches in the network. To improve
scalability and avoid single point failure, cluster of controllers
are placed in the network that are statically assigned to
switches following master-slave architecture. However, the
static assignment yields increased flow-setup delay and control
overhead in dynamic network conditions. To address the
limitations of static assignment, recently, dynamic controller
assignment between switches and controllers is studied [3]. In
the dynamic assignment, switches are dynamically assigned to
controllers based on their response time.
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The dynamic assignment between switches and controllers
may not be suitable to fulfill the requirements for large number
of flow-requests in the network with heterogeneous delay
requirements, for example, internet of things (IoT) networks.
Figure 1 presents different scenarios of controller assignment
and their limitations. It is evident that the existing static
and dynamic controller assignment schemes, which considered
unspittable flow-spaces, fail in the presence of large number
of flow-requests even if the controllers are capable of handling
the requests. As shown in Figure 1 (refer to last figure),
splitting the flow space among multiple controllers has the
potential to address this problem. To this extent, we adopt
the FlowVisor concept proposed by Sherwood et al. [4], in
which a virtualized network platform is used to control flow-
requests at a switch using multiple controllers. However, how
to dynamically assign flow-requests to controllers remains
unaddressed, while considering dynamic network conditions,
where traffic fluctuates frequently in an unpredictable man-
ner. Consequently, in this work, we propose a traffic-aware
dynamic controller assignment scheme in software-defined
networks.

Specifically, we formulate the controller assignment prob-
lem as a mixed integer linear programming (MILP) problem.
As the problem is NP-hard to solve, we propose a stable
matching game-based solution approach to assign flows to
controllers. We adopt the concept of a virtualized platform
that acts as a manager between control- and data planes, as
proposed in [4]. The proposed scheme consists of two phases –
adaptive window selection and matching game. In the adaptive
window selection phase, the manager adaptively selects win-
dow size before assigning flows to controllers. In the matching
phase, the concept of dynamic stable matching game is used
to assign flows to the controllers according to their preference
lists. Extensive simulation results show that the proposed
scheme is capable of minimizing controller response time and
percentage of QoS violated flows in the network compared
to the state-of-the-art schemes – simple stable-matching (SM)
[3], static assignment (Static), and minimum quota processing
(MQP) [5] schemes. In brief, the contributions in this work
are as follows:

• We formulate the controller assignment problem as
a mixed integer linear programming (MILP) problem,
while considering associated constraints.

• As the formulated MILP problem is NP-hard to solve,
we propose a dynamic stable-matching game [6] based
solution approach to assign flow-requests to controllers
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Fig. 1: Motivating scenarios: (a) Static assignment: no problem till flow-requests are within controller capacity; (b) The static
assignment fails in the presence of more number of flows; (c) Dynamic assignment resolves the issue by assigning switches
to the controller dynamically; (d) Dynamic assignment fails with more number of flows; (e) Proposed approach: flow-requests
are dynamically assigned to controllers to resolve the issue.

dynamically.
• Extensive simulation results show that the proposed

scheme is capable of reducing controller response time
by 31%, 39%, and 37% compared to the existing schemes
– simple stable matching (SM) [3], static assignment
(Static) [7], and minimum quota processing (MQP) [5],
respectively.

The rest of the work is organized as follows. Section II
discusses the state-of-the-art controller assignment schemes
in SDN, while highlighting their limitations. We present the
system model with preliminaries in Section III. Section IV
presents the proposed dynamic controller assignment scheme.
The performance of the proposed scheme is presented in
Section V. Finally, Section VI concludes the paper with future
research directions.

II. RELATED WORK

In the literature, there exists several schemes that focused
on controller-switch assignment in SDN [3], [5], [7]–[15].
We divide the existing schemes in two categories –static and
dynamic controller-switch assignment.

A. Static Assignment

Suh et al. [7] studied the concept of multiple controller
assignment problem to minimize flow-setup delay. In such
a scenario, on receiving a flow-request from a switch, a
controller decides the forwarding path and places flow-rules
at the switches associated to the former. Concurrently, the
controller informs other controllers associated to the switches
that are present in the forwarding path. Thus, the flow-setup
delay can be minimized for end-to-end paths. However, in such
a scenario, all the controllers need to maintain information
about whole network. Moreover, control overhead between
controllers increases significantly in the presence of large
number of flows in the network. Similar to [7], the controllers
need to maintain global network information, which may lead
to increased control overhead. Further, the controllers are
statically assigned to the switches in the network. Savas et al.
[11] proposed a recovery-aware controller-switch assignment
technique in SDN. The scheme assigns controllers to switches
and determines control-path between them, while planning for
a recovery-path. The recovery-path helps to avoid additional
control overhead in restoring routing paths in a network failure

conditions. The authors formulated the problem as an integer
linear programming (ILP) problem and proposed heuristic-
based solution approach. The authors showed that the proposed
scheme is capable of minimizing data-path delay in network
failure conditions in the presence of recovery-path, while
associating controllers to switches dynamically.

B. Dynamic Assignment

Wang et al. [3], [8] studied the controller-switch assignment
problem from the aspects of simple stable matching. In such a
stable matching-based scheme, the matching between switches
and controllers is done periodically, which is fixed for all
slots. The authors utilized this concept to assign switches
based on controllers’ response times. Therefore, some of flows
are forced to wait for next time-slot before they can be
assigned to controllers, which, in turn, leads to QoS-violation
of flows in the network. In contrast, the proposed scheme
determines the duration of each time-slot dynamically. The
duration of time-slot is determined by proposing a dynamic
window selection scheme based on online stable matching
game proposed by Lee [6]. Thus, the flows are assigned to
controllers dynamically depending on their delay requirements
(refer to Section IV). Filali et al. [5] proposed a matching
game-based assignment technique to associate switches to the
controllers, while considering minimum processing quota of
controllers. In other words, each controller is assigned to serve
a minimum number of tasks in the network. Consequently, a
load balancing scheme is ensured in such a scheme. However,
the authors did not consider the controller response time while
assigning the switches with controllers.

Synthesis: Table I summarizes the existing works from dif-
ferent aspects compared to the proposed scheme. The detailed
analysis of the existing schemes reveals that they focused on
controller-switch assignment without considering flow-specific
requirements in the network. This may lead to QoS-violation
for some of the flows in the network. To address such issues,
we propose a dynamic controller assignment scheme while
considering flow-specific requirements.

III. SYSTEM MODEL

Figure 2 represents an SDN-enabled network architecture.
We adopt the virtualized controller platform proposed by Sher-
wood et al. [4]. The virtualized platform helps us to control
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TABLE I: Summary of existing work

Work Flow-setup delay Control overhead Load balancing QoS
Suh et al. [7], Su and Pack [16] 3 7 7 7

Wang et al. [3], [8], Savas et al. [11] 3 3 3 7

Filali et al. [5] 7 3 3 7

He et al. [9] 3 7 3 7

Proposed scheme 3 3 3 3

TABLE II: List of Symbols

Symbol Description
S Set of switches in the network
C Set of controllers in the network
F Set of flows in the network
αm Request arrival rate at controller m ∈ C
∆que
m (t) Queuing delay at controller m

∆proc
m (t) Processing delay at controller m

ζm Request execution rate of controller m
θfm(t) Control overhead for flow f at controller m
∆f
m(t) Total delay experienced by flow f ∈ F at

controller m
λ Predefined constant for relative importance on

delay and control overhead

Fig. 2: Software-defined architecture with network resource
virtualization

the controller-switch association dynamically depending on
real-time network status. List of symbols used in the work
is presented in Table II.

Let the network comprises of a set of switches S =
{S1, S2, . . . , SN}, and a set of SDN controllers C =
{C1, C2, . . . , CM}. Further, the set of flows in the network is
represented as F = {F1, F2, . . . , FK}, where N,M,K ∈ Z+.
Flow-requests received at the switches are sent to the virtu-
alized platform, and the latter assigns the suitable controller
to serve the received request. This is dynamically done in
each time-slot. Duration of a time-slot is determined based on
the proposed adaptive window selection algorithm. A flow-
request is served by a controller by placing flow-rules at
the associated switches in the network. The set of flow-rules
associated to a flow-requests is termed as FlowSpace, as
defined in Definition 1. Consequently, for K flow-requests
running in the network, maximum K FlowSpaces at a switch

can be created. It is noteworthy that there may be many
flows crossing difference slices based on the flow-specific QoS
requirements1, as described in FlowVisor. In other words, the
flows associated to a particular application cross through the
same slice. Whereas flows associated to different applications
cross through different slices. We limit our discussion on
the number of slices and their architecture in this work as
the primary objective is to assign the flows to controllers
dynamically while considering their QoS requirements.

Definition 1. FlowSpace: A FlowSpace is defined as the
composition of flow-rules associated with a flow-request. For
example, flow-rules associated to a request can be either
exact-match or wildcard.

A. Problem Formulation
In this section, we present the flow-setup delay model and

control overhead associated to a flow-request while placing
flow-rules at the the forwarding devices.

1) Flow-Setup Delay Model: The flow-setup delay depends
on the propagation delay and controller response time. The
propagation delay depends on the path delay to send the
request from switch to controller and to place the flow-rules at
the switch. Consequently, the propagation delay is represented
as follows:

∆prop
m (t) =

∑
(i,j)∈Ps,m

2× δi,j (1)

where Ps,m denotes the path between switch s ∈ S and
controller m ∈ M. The symbol δi,j denotes the propagation
delay of link (i, j) in the path. On the other hand, the con-
troller response time is the combination of queuing delay and
processing delay. The queuing delay depends on the request
arrival and execution rates of the controller. At each controller
m ∈ M, flow-requests arrive following unique paths that
consists of a set of links in the network. Therefore, according
to Kleinrock independence approximation [17], flow-requests
arrival rate can be approximated as Poisson process, and it
is mathematically denoted as αm(t) =

∑
f∈F x

f
m(t), where

xfm(t) is a binary variable to denote whether flow-request
f ∈ F is associated to controller m ∈ C at time t. In a multi-
threaded scenario, parallel processing of flow-requests at the
controllers is considered in this work. Consequently, consider-
ing M/M/1 queuing model, the queuing delay experienced by
a flow-request at the controller m ∈ C is calculated as follows:

∆que
m (t) =

1

ζm − αm(t)
(2)

1In this work, we refer the QoS as the delay-bound, in which the received
flow needs to be processed.



4

where ζm is the request execution rate of the controller
m. The request execution rate depends on the forwarding
path computation delay by the controller. According to [18],
single source forwarding path computation delay depends on
the number of switches in the network. Mathematically, the
average processing delay experienced by a flow-request in time
t at the controller m ∈ C is represented as:

∆proc
m (t) =

1

ζm
O(|S|2) (3)

On receiving a new packet, a switch keeps the packet in its
buffer and sends a part of the information of the received
packet as packet meta-data to the controller. The packet meta-
data typically contains packet type with header fields, for ex-
ample, IPV4 with source and destination address. This packet
meta-data is considered as a flow-request to the controllers.
The size of the meta-data is the same for all flow-requests, as
defined by the OpenFlow protocol [1]. Therefore, the response
time of a controller m ∈ C for a flow f ∈ F is calculated as
∆f
m(t) = ∆prop

m (t)∆que
m (t) + ∆proc

m (t).
2) Control Overhead Model: Typically, SDN deployments

use in-band communications [8] for both the control messages
and data flows in the network. Further, the OpenFlow, the de-
facto protocol of SDN, allows the switches in the network
to send asynchronous control messages to all the controllers
in equal state, i.e., master state. In the proposed scenario,
the switches send the control messages to the virtualized
platform, which takes care of allocating suitable controller.
Therefore, each control message is received by at least one
controller. The control traffic overhead at time t for flow-
request f ∈ F associated from switch n ∈ S to controller
m ∈ C is represented as:

θfm(t) = γm,nx
f
m(t),∀m ∈ C,∀n ∈ S (4)

where γm,n denotes the hop-count between switch n ∈ S and
the controller m ∈ C.

B. Optimization Problem

The objective of the proposed scheme is to minimize
the flow-setup delay and control overhead in the network.
Consequently, based on the flow-setup delay and control
overhead models, we formulate the optimization problem,
while considering associated constraints as follows:

Minimize
xf
m

Φ =

M∑
m=1

K∑
f=1

λ∆f
m(t) + (1− λ)θfm(t)

s. t.
αm(t) ≤ ζm, ∀m ∈ C (5)
M∑
m=1

xfm = 1, ∀f ∈ F (6)

xfm ∈ {0, 1}, ∀m ∈ C,∀f ∈ F (7)

∆f
m(t) ≤ δf (t), ∀m ∈ C,∀f ∈ F (8)

The optimization problem is formulated as a combination of
flow-setup delay and control overhead, where λ is a predefined
constant to consider relative importance on flow setup delay

and control overhead. Equation (5) denotes that request assign-
ment rate from FlowVisor to a controller is always less than
the processing capacity of the controller. Equation (6) ensures
that a flow-request is assigned to only one controller at a time.
This preserves the consistency of flow-rules associated to a
flow through all switches in the network. The binary variable
is used to denote whether a flow is assigned to a controller,
as mentioned in Equation (7). Finally, delay-bound of a flow-
request is considered Equation (8).

The above mentioned optimization problem is a variant
of the generalized optimization problem [19], which is NP-
hard. Consequently, we propose an online stable matching-
based algorithm to assign the flow-requests to controllers
dynamically to minimize associated delay, while considering
associated control overhead (refer to Section IV).

C. Use of online stable matching algorithm

In SDN, controllers take adequate forwarding decisions on
receiving a new flow at network devices, i.e., switches and
routers. In a single controller scenario, it is straightforward
that flow-requests are sent to the controller on receiving new
flows. However, in the presence of multiple controllers, it is
required to assign flow-requests to the appropriate controller,
so that flow-setup delay and associated control overhead are
minimized, which is the primary objective of the proposed
scheme. Therefore, the objective of the proposed scheme is
to find a dynamic mapping between the flow-requests and
the distributed controller instances, in order to minimize the
controller response time, and thus, meet the heterogeneous
delay requirements of flows in the network. These require-
ments are easily encoded by an optimization model, as pre-
sented in Section III-B. However, the problem size can be
expected to be relatively large with a large number of traffic
flows, which makes it computationally challenging. Since the
problem must be solved within a particular delay bound, we
explored efficient online heuristics to solve the problem within
the stipulated time-bounds.

From the perspective of each flow, the objective is to reduce
the flow-setup delay. On the other hand, from a network-wide
perspective, the objective is to reduce the overall network
overhead. The Gale-Shapely [20] two-sided matching frame-
work lends itself well to adequately model these disparate
objectives. In this framework, there are two disjoint sets of
agents (i.e., flow-request and controller), each with individual
objectives, who rank each other based on their preferences.
The problem is to find a suitable matching between these set
of agents such that no two agent from each set prefer each
other than the current matching. In particular, we consider the
online version of the problem, where the agents dynamically
enter or leave the system. Online two-sided matching has
been studied widely in literature, however, the framework
proposed by Lee [6] is particularly suited to model our system,
as it considers a delay-bound, within which the matching
decisions must be made. This reflects the QoS requirements
of the flows in terms of delay. Consequently, we propose
a dynamic controller assignment scheme in the presence of
multiple controllers and heterogeneous flows in SDN, based
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on online stable matching approach proposed by Lee [6]. We
present the proposed algorithms and discuss key differences
between the proposed scheme and the online stable matching
strategy proposed by Lee [6] in Section IV.

IV. DYNAMIC CONTROLLER ASSIGNMENT

To assign flow-requests to controllers, we define preference
lists for flows and controllers and their objectives, similar to
the concept proposed by Lee [6]. Therefore, the proposed
scheme assigns the flow-requests to controllers dynamically
to minimize flow-setup delay, while considering the associated
control overhead and flow-specific requirements. It is notewor-
thy that the proposed algorithms are executed at the FlowVisor
platform. Further, introduction of FlowVisor platform between
the switches and controllers may add additional flow-setup
delay. It is noteworthy that the execution time at the FlowVisor
platform is unknown a priori. However, the execution time
of the matching algorithm is implicitly considered while
evaluating the performance. Therefore, we consider the delay
involved in FlowVisor while evaluating the results (refer to
Section V for details).

Objective of flow-request: Objective of flow-request is to
choose the controller with minimum response time. How-
ever, the actual response time may vary from the estimated
one due to dynamic flow-requests received by controllers in
the network. Therefore, a flow-request considers the worst-
case response time while choosing a controller to serve it.
Mathematically, the worst-case response time is calculated as
follows:

∆max
m (t) =

1

ζm − ηmζm
,∀m ∈ C (9)

where ηm denotes the decay factor to handle bursty flow-
requests. Therefore, the controller is assigned with maximum
load, i.e., flow-requests, which causes to the worst-case re-
sponse time of a controller m ∈ C.

Preference list of flow-request: According to the worst-
case response time mentioned in Equation (9), each flow-
request maintains an array of preferences to controllers in
ascending order. Mathematically, Pf (t) = {Cm}, where m ∈
[1,M ], and I(Ci) ≤ I(Cj) iff ∆max

i (t) ≤ ∆max
j (t),∀i, j ∈

[1,M ] and i 6= j. I(Ci) denotes the index of ith controller in
the array of flow preference list.

Objective of controller: The objective of the controller is
to choose flow-requests for which the total cost (combination
of delay and control overhead) is minimized (refer to Section
III-B). The control overhead associated to a flow-request is
calculated as number of hops from the corresponding switch
to the controller multiplied by the number of maximum
flow-rules associated to the request required to be placed.
Mathematically, it is denoted as θmaxf (t) = θfm(t)Rmaxf ,
where θmaxf (t) denotes the maximum control overhead of a
controller associated to flow-request f ∈ F at time t. Symbol
Rmaxf denotes the maximum number of flow-rules associated
to the request f . Therefore, we redefine the objective function
presented in Section III-B as follows:

Φ(f,m, t) = λ∆f
m(t) + (1− λ)θmaxf (t) (10)

Definition 2. α% approximated stable matching [6]: A flow-
request f ∈ F is associated to a controller m ∈ C, whose
rank is within top α% of f ’s original preference list.

Definition 3. Matching cost for control overhead (MC): It is
defined as the total cost rate of all controllers associated to
flow-requests such that MC =

∑M
m=1 Φ(·), where Φ(·) is the

cost rate of controller m, as presented in Equation (10).

Preference list of controller: According to Equation (10),
each controller maintains an array containing preference list
of flow-requests in ascending order similar to flow-requests.
Mathematically, Pm(t) = {Ff}, where f ∈ [1, F ], and
I(Fi) ≤ I(Fj) iff Φ(i,m, t)(t) ≤ Φ(j,m, t),∀i, j ∈ [1, F ]
and i 6= j. I(Fi) denotes the index of ith flow-request in the
array of controller preference list.

The flow-requests are assigned to controllers in two phases
— adaptive window-size selection and matching between flow-
requests and controllers. The phases are discussed in the
subsequent sections.

A. Adaptive Window-Size Selection

In this phase, the duration of a time-slot, termed as window-
size, for taking decisions is determined dynamically depending
on the degree of satisfaction in matching and associated delay-
bound. Therefore, the adaptive window-size selection process
tries to maximize the degree of satisfaction, while considering
associated delay in order to preserve flow-specific delay-
bounds. The degree of satisfaction depends on the approxi-
mated stable matching (refer to Definition 2) and the matching
cost (refer to Definition 3). Mathematically, the degree of
satisfaction fdos is defined as fdos = MC

(α− 1
M )τ

, where MC

is the matching cost, α is the approximation ratio of the
matching, M is the size of the preference list, i.e., the number
of controllers2. Symbol τ denotes the total waiting time of
all flow-requests. It is noteworthy that fdos(MC, τ) = MC if
α− 1

M or τ (or both) is zero [6].
According to the value of fdos, the virtualized manager

determines the duration of window-size in an adaptive manner.
Therefore, the window-size changes over time depending
on the degree of satisfaction. We limit our discussion on
the increasing and decreasing factor in this paper. Interested
readers may refer to [6] for details on the window selection
algorithm (also presented in supplementary material).

B. Matching Algorithm

In the matching phase, received flow-requests are associated
to controllers. Algorithm 1 presents the matching algorithm
between flow-requests and controllers, in order to associate
flow-requests with controllers.

C. Key differences between DCA and [6]

It is noteworthy that we do not claim to propose a new
matching algorithm or improve the performance of an existing
one. Rather, our focus is on adopting a suitable approach to

2In this work, we consider that the flow-requests initiate the matching
process.
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Algorithm 1 Algorithm for matching between flow-requests
and controllers
Inputs: Preference list of each flow-request Lf ; Preference

list of each controller Lm
Output: Stable matching – all flow-requests are assigned

1: while all requests f ∈ F not assigned do
2: select controller m ∈ C from Lf . controller m is

not chosen previously
3: if αm ≤ ζm then . capacity constraint
4: assign f to m
5: else if Φ(f,m, t) < Φ(f

′
,m, t) then . using

equation (10) and preference list Lm
6: assign request f to controller m
7: free request f

′
from controller m

8: else
9: controller m rejects request f

10: Stable matching is obtained as all requests are assigned

efficiently solve the dynamic allocation between flow-requests
and distributed controller instances. Thus, we explained the
reasoning behind adopting the two-sided matching framework
in Section III-C. In particular, the online windowed matching
framework proposed by Lee [6] is particularly well-suited to
address this problem, since in contrast to other online matching
schemes, we do not need to match requests immediately upon
arrival, but have some leeway as long as the time remains
within the stipulated QoS requirements. However, in contrast
to the scheme proposed by Lee [6], we do not consider the
concept of credits. While the concept of credit maximization
may be useful in scenarios where each match yields some
revenue. In our model, the consideration of credit leads to
sub-optimal matching which affects the QoS. Moreover, in
contrast to the scheme proposed by Lee, we always consider
the flow-requests to be the proposers in the matching game,
which leads to a delay-optimal result rather than overhead-
optimal. This is significant because the delay has to be within
certain given bounds.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed scheme using
python-based simulations. Table III shows different parameters
and their values used in the simulation [21]. We use the
AttMpls network topology from the Internet topology Zoo
[22]. The controllers are placed in the network in a uniform-
random manner. We plot the results using 95% confidence
interval.

We compare the proposed scheme with two existing
schemes — simple stable matching (SM) [3], static assignment
(Static) [7], and minimum quota of processing (MQP) of
controllers [5]. In stable matching (SM), the flow-requests
from switches are mapped with controllers according to the
preference lists of switches and controllers. The preference list
of switches is determined according to the controller response
time. On the other hand, switches are statically assigned to
controllers in case of static matching (Static). In case of
MQP, the switches are assigned to the controllers based on

their minimum capacity constraints, i.e., each controller must
fulfill their minimum processing quota. Thus, MQP ensures
effective load balancing between controllers in the network.
In contrast, the proposed scheme, DCA, assigns flows with
the controllers according to the preference lists, as presented
in Section IV. In rest of the paper, we refer DCA, SM, Static,
and MQP to denote the proposed, simple stable matching,
static assignment, and minimum processing quota schemes,
respectively. Further, we use three performance metrics to
show the effectiveness of the proposed scheme — controller
response time, QoS violated flows, and control overhead. We
discuss the results in the following subsections.

A. Controller Response Time

The main objective of the proposed scheme is to minimize
flow-setup delay in the network. Consequently, we measure
the average controller response time with different number
of flows and controllers, as presented in Figure 3. We see
that the proposed scheme, DCA, outperforms the existing
schemes — SM [3], Static, and MQP [5] — in terms of
controller response time. This is due to the fact that the
proposed scheme, DCA, assigns flow requests based on their
delay requirements and the associated control overheads to the
controllers. Therefore, a single controller is not heavily loaded
using the proposed scheme, which, in turn, minimizes the
overall controller response time. On the other hand, the exist-
ing scheme, SM, assigns the flow requests considering delays
associated to the controllers only. As a result, it is observed
that some of the controllers are heavily loaded, which, in turn,
increases the overall controller response time. In case of static
assignment, flow requests are statically assigned to controllers
irrespective of their response times and associated control
overheads. Finally, in case of MQP, flow-requests are equally
distributed among the controllers based on their minimum
quota of processing. Consequently, the existing schemes, SM,
Static, and MQP, yield degraded performance compared to
the proposed scheme. Further, we see that controller response
time increases with an increase in the number of flows. This is
due to the fact that queuing delay at the controllers increases
with the increasing number of flows in the network. However,
the proposed scheme, DCA, always yields better performance
than the existing schemes, SM, Static, and MQP. We also
present the average controller response time with different
number of controllers in the network, as presented in Figure
3. We see that controller response time decreases with an
increase in the number of controllers in the network. This
due to the fact that more number of controllers are available
to serve flow-requests, which, in turn, minimizes the queuing
delay experienced by the flows. It is evident that the proposed
scheme, DCA, minimizes the controller response time by 31%,
39%, and 37% compared to SM, Static, and MQP, respectively.

It is noteworthy that the proposed scheme, DCA, incurs an
additional delay at the virtualized platform in terms of execu-
tion time. Figure 4 presents the comparison of execution time
between the proposed scheme, DCA, and the existing schemes
– SM, Static, and MQP. We see that the execution time is
more using the proposed scheme compared to the existing
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TABLE III: Simulation parameters

Parameter Value Parameter Value Parameter Value
Number of controllers [2, 5, 8, 10] Number of flows [10000–30000] Controller exec. rate 50-100
Average packet size 94–699 bytes Network topology AttMpls [22] Flow delay bound 10-200 ms
Average traffic rate 562–516,540 bps Active time 1–34 s Controller response time 10-100 ms
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Fig. 3: Average controller response time with flows
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Fig. 4: Comparison of execution time of different algorithms

schemes. This is due to the fact that the duration of time-
slot and assignment are done dynamically for all flow-requests
instead of switches in the network. Therefore, average flow-
setup delay is increased using the proposed scheme. However,
the proposed scheme is capable of minimizing overall delay
compared to the existing schemes, as depicted in Figure 3.

B. QoS Violated Flows

Similar to the controller response time, we also measure the
percentage of QoS violated flows in the network, where delay-
bound of flow is considered as QoS requirements. Figure 5
shows the percentage of QoS violated of flows with different
number of flows. We see that the proposed scheme, DCA,
minimizes the QoS violated flows by 72%, 73%, and 74%
compared to the existing schemes, SM, Static, and MQP,
respectively. The proposed scheme, DCA, assigns the flows
to the controllers considering the controller response time
and flow delay-bound. Consequently, the percentage of QoS
violated flows is minimized. In contrast, the existing schemes,
SM and MQP, did not consider the flow delay bounds while
assigning flows to the controllers. Moreover, in SM, some
of the flows are forced to wait for next time-slot before
assignment, which, in turn, leads to increased QoS viola-
tion in the network. Similarly, in Static scheme, switches
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Fig. 5: QoS violated flows with different number of flows

are statically assigned to the controllers irrespective of the
flow delay-bounds. Consequently, SM, Static, and MQP yield
degraded performances compared to the proposed scheme,
DCA, in terms of QoS violated flows. Further, we see that
the percentage of QoS violated flows increases with increasing
number of flows in the network. This is due to the fact that the
controller response time increases with increasing number of
flows, as depicted in Figure 3. However, the proposed scheme
is always better than the existing schemes. We also see that
the percentage of QoS violated flows decreases with increasing
number of controllers. This is due to the fact that flow-setup
delay is minimized, as controller response time is minimized
(refer to Figure 3).

C. Control Overhead

We also measure the control overhead in assigning flow-
requests to the controllers including the control messages
associated with flow-rule placement, as depicted in Figure
6. The figure shows that the proposed scheme, DCA, incurs
increased control overhead compared to the existing schemes,
SM, Static, and MQP. This is due to the fact that flow-requests
are assigned to the controllers by the virtualized platform.
Therefore, each flow-request is received by the virtualized
platform, and the latter communicates with all controllers to
find the best controller to be assigned. On the other hand,
in case of SM, switches communicate with controllers to find
the best controller irrespective of flows received by the former.
Consequently, SM incurs less control overhead compared to
the proposed scheme, DCA, as number of flows are always
greater than number of switches in practical scenarios. The
similar strategy was considered in case of MQP. On the other
hand, switches are statically assigned to the controllers in
case of static assignment, which, in turn, incurs less control
overhead compared to other schemes.
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Fig. 6: Control overhead with different number of flows

 20
 30
 40
 50
 60
 70
 80
 90

 100

10000 15000 20000 25000 30000

R
es

p
o
n

se
 t

im
e 

(m
s)

Number of Flows

λ=0.25
λ=0.5

λ=0.75

(a) Average controller response time

 30
 40
 50
 60
 70
 80
 90

 100
 110

10000 15000 20000 25000 30000C
o
n

tr
o
l 

m
es

sa
g
es

 (
x

1
0

0
0

)

Number of Flows

λ=0.25
λ=0.5

λ=0.75

(b) Average control overhead

Fig. 7: Impact of λ on controller response time and control
overhead

D. Impact of Lambda

We show the impact on choosing the value of λ, which
is the relative importance on flow-setup delay and control
overhead in the network. Figure 7 depicts the changes in
average controller response time and control overhead in the
network with different values of λ. From the results, we see
that the value of λ can be adjusted based on the user-specific
importance on delay and control overhead.

In summary, it is evident that the proposed scheme, DCA, is
capable of reducing controller response time and QoS violated
flows, while incurring moderately increased control overhead,
compared to the existing schemes, SM, Static, and MQP.

VI. CONCLUSION

In this paper, we proposed a dynamic controller assignment
scheme considering flow-specific requirements. The proposed
scheme assigned flows to the controllers based on online stable
matching game, in order to minimize flow-setup delay and
QoS violation in the network. Extensive simulation results
showed that the proposed scheme is capable of enhancing
the network performance in terms of delay and QoS violation
compared to the existing schemes, while incurring moderate
control overhead in the network.

We saw that the proposed scheme incurs increased control
overhead in the network due to the inclusion of virtual
platform between the data- and control planes. Therefore, we
plan to investigate this issue as a future extension of this
work. Further, it was observed that the proposed scheme incurs

additional execution time due to the inclusion of virtualized
platform between switches and controllers. Therefore, we also
plan to investigate this in future.
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