
Traffic-Aware Rule-Cache Assignment in SDN:
Security Implications
Sudip Misra∗, Niloy Saha∗, Rupayan Bhakta†

∗Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, 721302, India
Email:{sudipm, niloysaha}@iitkgp.ac.in

†Department of Computer Science and Engineering, National Institute of Technology Durgapur, 713209, India
Email: rupayanbhakta2014@gmail.com

Abstract—Cache-based flow-rule management in SDN aims to
address the issue of limited ternary content addressable memory
(TCAM) in switches by combining software switches (cache)
with TCAM hardware. This preserves the fast packet-processing
capabilities of hardware, while providing a large flow-space
for rules pertaining to QoS management and security. How-
ever, to improve the reliability of such software caches, and
meet requirements such as scalability and fault-tolerance, they
should be placed in a distributed manner in the network. The
dynamic assignment of these software caches with the hardware
switches is challenging; static or improper assignment may
lead to increased load imbalance, which affects overall network
performance, and may make the network more vulnerable
to attacks such as denial-of-service. Therefore, in this paper,
we consider the traffic-aware rule cache assignment problem
to lower the overall delay and network overhead. We model
the problem using a many-to-many matching framework and
show that the proposed algorithm arrives at a pairwise stable
outcome. Extensive simulation results show that the proposed
scheme reduces the average delay by 10% and 35%, and the total
network overhead by 19% and 39% compared to minimum-
distance based and random based cache assignment schemes,
respectively.

Index Terms—Software-Defined Networking, Cache, Rule
Management, Two-sided Matching

I. INTRODUCTION

Software Defined Networking (SDN) enables improved
control of networks by introducing networking abstractions
for orchestrating data-plane elements using a centralized con-
troller. The forwarding abstractions provided by the Open-
Flow protocol [1] translate high-level policies into simple
network primitives (flow-rules) in order to simplify network
management. However, the match-action model followed by
OpenFlow necessitates the use of TCAM hardware switches
for fast processing, which limits the usefulness of SDN due
to considerations of cost and power [2], [3]. In existing
literature, there are two main approaches to address this issue
— a) compressing flow-rules to reduce TCAM utilization
[4], [5], and b) caching, where TCAM hardware switches
are augmented using slower, but less expensive software
switches, while faster TCAM is used as cache [6], [7].
The compression-based approaches, however, change the
forwarding semantics, and can lead to security vulnerabilities,
as shown in Figure 1a. The wildcard rule (*, dst1) used
for compression allows the malicious flow (src2, dst1) to
pass through undetected. On the other hand, caching-based

approaches preserve the original policies, at the cost of
additional software switches. Figure 1b shows the software
cache architecture, where the TCAM hardware is augmented
using software switches and a cache agent responsible for
distributing flow-rules between the slow software cache and
the fast TCAM.

(a) Compression-based strate-
gies (wildcard matching) leads
to unseen flows causing secu-
rity risk

(b) Software cache presents
the illusion of large flow-space
while preserving the advan-
tages of fast TCAM

Fig. 1: Motivating example showing security benefits of a
cache-based approach

In order to improve reliability, these software caches may
be placed in a distributed manner in the network, where more
than one hardware switch may be connected to a software
cache (scalability), and one hardware switch may be con-
nected to more than one software cache (fault-tolerance). In
a practical scenario, it is preferable to minimize the number
of such software caches, in order to reduce overall costs.
This, along with the many-to-many mapping constraints in-
troduced due to scalability and fault-tolerance requirements,
make the assignment of hardware switches to appropriate
cache instance challenging. Moreover, in many application
domains of SDN, such as cellular and IoT networks, in-band
communication is used, where control messages are routed
alongside the data-plane packets. Thus, latencies between
hardware switches and cache instances may be non-uniform,
which further complicates the assignment problem.

To address these concerns, we model traffic-aware rule
cache assignment (TRC) as an optimization problem to
reduce the overall delay and network overhead. A crucial

challenge is to design an efficient algorithm to solve the
TRC problem, so that the software cache instances can
be dynamically re-assigned depending on varying network
conditions. For this, we model the TRC problem using
a many-to-many matching framework, where the hardware
switches and cache instances are regarded as two sets of
players. The key contributions of this paper are as follows:
• We formulate an integer program to determine the min-

imum number of software switches (caches) required to
meet scalability and fault-tolerance requirements.

• We model the traffic-aware rule cache assignment (TRC)
problem in SDN using a many-to-many matching frame-
work to reduce the overall delay and network overhead.

• We confirm that the proposed algorithm converges to a
stable outcome within a few iterations.

• Extensive simulations show that the proposed scheme
significantly reduces the overall delay and network
overhead.

II. RELATED WORK

In this Section, we analyze the existing literature from
two perspectives — a) cache-based flow-rule management
in SDN, and b) matching-based approaches for network
resource allocation.

Cache-based flow-rule management. Flow-rule caching
is a promising approach for flow-rule management in SDN.
In [8], the authors consider the problem of limited memory
of SDN switches by using hardware TCAM as a cache for
the most frequently used flow rules. The authors focused
on efficient cache replacement policies in order to minimize
the table-miss ratio, and decrease network overhead. This
is different from the proposed scheme, where we consider
distributed software caches. Katta et al. [6] considered a
caching-based approach for SDN, and devised a method to
handle wildcard rule-dependencies between the fast hardware
TCAM and the slower software switches. Ruia et al. [7]
proposed a similar cache-based solution for software-defined
edge/access networks, termed flowcache. Flowcache acts as
a transparent layer between the SDN controller and the
switches, and temporarily stores the content of the recent
flow-table entries. Thus, it can reduce the access time if
similar flow requests arrive in the future. Both [6] and [7]
consider a distributed cache architecture, but do not discuss
proper assignment of the cache instances to the hardware
switches. Huang et al. [9] consider the rule-caching problem
with an aim to achieve optimal trade-off between the TCAM
occupation cost and the controller overhead due to table-miss.
In their work, the authors considered a hardware TCAM with
single controller, and focused on configuring the appropriate
timeout values for the flow-rules. In contrast, in the pro-
posed work, we consider hardware TCAM augmented with
distributed software-caches, and focus on optimal mapping
between them.

Matching-based approaches for network resource al-
location. Matching theory is widely used to solve resource
allocation problems in networks. Han et al. [10] presents a
survey of matching theory applications in wireless networks.

Hamidouche et al. [11] used matching theory to address
distributed edge caching in small cell networks. Wang et
al. [12] considered a matching-theory based solution to
address dynamic controller assignment in software-defined
networks. The authors modeled the switch controller assign-
ment problem as a many-to-one matching game. In these
works, matching-based frameworks were used to develop
efficient solutions to different network resource allocation
problems. Inspired by this, in this work, we follow a similar
approach and model the rule-cache assignment problem using
a many-to-many matching framework.

III. SYSTEM MODEL

In this Section, we present the system architecture of a
software-cache enabled software-defined network consisting
of hardware TCAM and distributed software caches, and
present an integer programming formulation for the traffic-
aware rule cache assignment (TRC) problem. The key nota-
tions are summarized in Table I.

Fig. 2: Architecture

TABLE I: Summary of key notations

Notation Description
H Set of hardware switches.
C Set of software cache instances.
qsj Scalability quota of each cache instance j ∈ C.
qfti Fault-tolerance quota of each hardware switch i ∈ H.
x(t) Assignment of hardware switches to cache instances

in timeslot t.
δ(t) Overall delay associated with assignment x(t)
o(t) Control overhead associated with assignment x(t)

Figure 2 shows the system architecture comprising of a
set of hardware switches H = {Hi | i ∈ Z+}, a set
of software cache instances C = {Ci | i ∈ Z+}, and a
cache controller (CC), located at the SDN controller. The
CC controls the assignment between the hardware TCAMs
and the cache instances. Let x(t)ij denote whether hardware
switch i ∈ H is assigned to cache instance j ∈ C in
timeslot t (x(t)ij = 1) or not (x(t)ij = 0). Let qsj be the
maximum number of hardware switches each cache instance
j ∈ C can accommodate to in order to meet scalability
requirements. Similarly, let qfti be the number of cache
instances each hardware switch i ∈ H should be connected to
in order to meet fault-tolerance requirements. For maintaining
correctness of shared state, popular SDN controller such
as ONOS [13] and OpenDayLight suggest odd number of
controller instances1. Accordingly, we also assume that qfti

1ONOS and OpenDayLight use the RAFT consensus protocol which
requires odd number of instances.

are odd. In particular, we choose qfti from the set {1, 3, 5}
in random uniform fashion.

In order to reduce overall costs, our objective is to mini-
mize the total number of cache instances required. This can
be modeled as an integer programming problem as follows:

min
∑

w(t)j (1a)

subject to
∑
j∈C

x(t)ij = qfti , ∀i ∈ H (1b)∑
i∈H

x(t)ij ≤ qsjw(t)j , ∀j ∈ C (1c)

x(t)ij ≤ w(t)j , ∀i ∈ H,∀j ∈ C (1d)

where Equations (1b) and (1c) represent the fault-tolerance
and scalability constraints. Equation (1d) introduces dummy
variables w(t)j which are used to keep track of how many
cache instances are utilized. We solve the formulated integer
programming problem (1) using the GLPK solver2.

Next, we consider the assignment problem between the
hardware switches and the cache instances. Our objective is
to reduce the overall cost of assignment. The cost associated
with an assignment x(t) comprises of two factors — a) the
delay between the hardware switch i and cache instance j,
and b) the control overhead in timeslot t.

A. Delay Model

The delay comprises of a) the propagation delay between
the hardware switch i and cache instance j during multi-hop
traversal using in-band communication, and b) the queuing
delay at the cache instances, which depends on the load.
We assume a load-balancing mechanism for flow-lookup in
the software switches, which leads to uniformly distributed
flow-lookup times (processing delay) among the software
switches at all the cache instances. Therefore, we neglect
the processing delay while making assignment decisions.

The propagation delay depends on the distance dij between
the hardware switch i the cache instance j, and also depends
on the communication media (coaxial cable, optical fiber,
wireless). Mathematically, it is given as dij/v, where v is
the propagation speed, which depends on the medium. For
simplicity, we assume coaxial cable links with propagation
speeds of 2.3 ∗ 105 km/sec [14]. The queuing delay at
the cache instances depend on the incoming load (cache-
miss) from the hardware switches. Let α(t)i be the cache-
miss rate of hardware switch i in pkts/sec in timeslot t.
Therefore, the total arrival rate at cache instance j is given
as λ(t)j =

∑
i α(t)ix(t)ij . Although arrivals from each

individual switch i may be bursty, λ(t)j can be approximated
as a Poission process using the Kleinrock independence
approximation [15]. Therefore, we can model the arrival
process at the cache instances using an M/M/1 queue, which
results in a queuing delay of 1/(µj − λ(t)j), where µj

represents the capacity of the instance in pkts/sec. Thus, the

2https://www.gnu.org/software/glpk/

overall delay δ(t) associated with an assignment x(t) is given
as:

δ(t) =
∑
i

∑
j

dij
v

+
∑
j

1

µj − λ(t)j
(2)

B. Control Overhead

We consider in-band communication, where control mes-
sages are routed alongside the data-plane packets. Since
bandwidth is limited, it is preferable to keep the control
overhead low. Let hij denote the hop count between hardware
switch i and cache instance j. Then, the overall control
overhead in timeslot t is given as:

o(t) =
∑
j

∑
i

hijα(t)ix(t)ij (3)

C. Rule-cache Assignment Problem

Our aim is to assign hardware switches to the cache
instances to minimize the delay, while keeping the control
overhead low. Therefore, using Equations (5) and (3), the
assignment be modeled as an integer programming problem
as follows:

min ηδ(t) + (1− η)o(t) (4a)
subject to λ(t)j ≤ βµj , ∀j ∈ C (4b)

x(t)ij ∈ {0, 1}, ∀i, j (4c)
(1b), (1c)

Equation (4b) ensures that cache instances are not over-
loaded, where β ∈ (0, 1) represents a decay factor. The
term η ∈ [0, 1] is a weight factor, used to signify the
relative importance of delay and control overhead, which is
dependent on the particular use-case. For instance, to improve
resilience against control plane attacks such as denial-of-
service, η can be lowered to assign more importance to
network overhead. The integer programming problem (4) can
be reduced to the generalized assignment problem, which
is in most cases, NP-hard [16]. However, the solution to
the assignment problem must be computationally efficient
in order to be practical in time-varying network conditions.
Therefore, we adopt a matching-theory based solution, which
is considered an efficient approach for many networking
problems [10].

IV. SOLUTION APPROACH

In this Section, we model the traffic-aware rule cache
assignment problem using a many-to-many matching frame-
work in order to solve the problem efficiently.

A. Matching Concepts

We consider the hardware switches H and the cache
instances C as two sets of players. The hardware switches’
objective is to associate with the cache instance with the
lowest delay δ(t)ij , while the cache instances prefer to asso-
ciate with the hardware switches which contribute minimal
control overhead o(t)ij . According to matching theory, these

objectives are realized by specifying preferences of each
player over subsets of the opposite set. For any hardware
switch i, the notation A �i B is used to denote that i prefers
set A ⊆ C over B ⊆ C. A similar notation is used to represent
the preferences of each cache instance. Given a potential set
of cache instances Mi ⊆ C, each hardware switch i can
determine which subset of Mi it prefers to associate with.
We use the notation Ci(Mi) to denote this choice set.

Definition 1. A many-to-many matching µ is a function that
maps the set H ∪ C to the set of all subsets of H ∪ C, and
satisfies for all i ∈ H and j ∈ C, the following [17]: i)
µ(i) ∈ 2Mi , ii) j ∈ µ(i) iff i ∈ µ(j), iii) |µ(j)| ≤ qsj , and
iv) |µ(i)| = qfti

Let A(i, µ) denote the set of currently assigned partners
of i under the matching µ. In other words, A(i, µ) denotes
the set j ∈ C so that i ∈ µ(j) and j ∈ µ(i). For solving the
rule cache assignment problem, we require a stable solution,
so that there exists no players who prefer each other, but are
not matched under the current assignment µ. In particular,
we are concerned about pairwise-stability, which is defined
as follows [17]:

Definition 2. A matching µ is pairwise-stable if there exists
no pair (i, j) with i /∈ µ(j) and j /∈ µ(i) such that if T ∈
Ci(A(i, µ) ∪ {j}) and S ∈ Cj(A(j, µ) ∪ {i}), then T �i

A(i, µ) and S �j A(j, µ).

B. Algorithm

The proposed algorithm is based on the deferred accep-
tance algorithm (DAA) [18] and proceeds in three stages
— a) network statistics collection, b) preference relation
specification, and c) two-sided matching, as presented in
Algorithm 1. During the first phase, network information
such as link latencies and flow-statistics are collected which
is used to calculate network delay and controller overhead
using Equations (5) and (3). Link latencies can be calculated
analytically if distances are known beforehand, or may be
measured in real-time using probing methods in SDN [19].
Similarly, control plane load can be inferred from monitoring
SDN flow and packet-statistics3. In the second phase, the
information collected in the first phase is used to specify
the preference relations of the players, according to their
goals (delay for hardware switches, and network overhead
for cache instances). While building the preference relations
for hardware switches, we observe from Equation (5) that the
preferences are inter-dependent i.e., preferences for hardware
switch i ∈ H is dependent on all other switches k ∈ H | k 6=
i. Roth et al. [18] show that with interdependent preferences,
the solution requires computing preference relations over all
subsets of H and C, making the problem combinatorially
complex. To overcome this problem, while computing δ(t)ij ,
we consider the worst case queuing delay at the cache
instances. Mathematically,

3https://wiki.onosproject.org/display/ONOS/Control+Plane+
Management+Application

δ(t)ij =
dij
v

+
∑
j

1

µj − βjµj
(5)

The third phase consists of two-sided matching between
the hardware switches and cache instances, until pairwise-
stability is achieved.

Algorithm 1 Dynamic Rule Cache Assignment
Inputs: Set of hardware switches H and set of cache in-

stances C with associated requirements.
Output: A matching µ between H and C.

Phase 1 - Network statistics collection
1: Network information collected and used to calculate

network delay and controller overhead.
Phase 2 - Preference relation specification

2: Each i ∈ H and j ∈ C specifies its preference over the
other set to build preference lists.
Phase 3 - Two-sided matching

3: Each j ∈ C sends association request to its preferred
subset Ci(H).

4: Each i ∈ H refuses all expect the preferred qfti cache
instances.

5: repeat
6: Each j ∈ C sends association request to its preferred

subset Ci(H), including those already sent to who
have not refused it yet.

7: Each i ∈ H refuses all except the preferred qfti cache
instances.

8: until convergence to a pairwise-stable outcome

C. Stability Analysis

Theorem 1. Algorithm 1 always converges to a pairwise-
stable matching between hardware switches H, and cache
instances C.

Proof. Let us assume the matching µ generated by Algorithm
1 is pairwise-unstable. Therefore, there exists a hardware
switch i ∈ H and a cache instance j ∈ C with i /∈ µ(j)
and j /∈ µ(i) such that for T ∈ Ci(A(i, µ) ∪ {j}) and S ∈
Cj(A(j, µ) ∪ {i}) we have T �i A(i, µ) and S �j A(j, µ).
If i /∈ µ(j) and S �j A(j, µ), it implies i /∈ S. However,
i /∈ S leads to i /∈ Cj(A(j, µ)∪{i}), which is a contradiction.
Therefore, our assumption is wrong, and the matching µ is
stable. �

V. PERFORMANCE EVALUATION

For simulations, we consider the AttMpls topology from
the Internet Topology Zoo [20], consisting of 25 switches
(hardware) and 56 links. The link distances dij are calculated
using the latitude and longitude information from the AttMpls
topology. Solving the integer program (1), we obtain the
minimum number of cache instances for this topology as
|C| = 5. Unless stated otherwise, we take scalability quota
of cache instances as qsj = 20. The different parameters
considered for the simulations are summarized in Table II.

To evaluate the effectiveness of the proposed dynamic
rule-cache assignment scheme (TRC), we compare with a)

TABLE II: Simulation parameters

Parameter Value
Number of hardware switches (|H|) 25 [20]
Number of cache instances (|C|) 5
Cache miss rate 5− 15% [6]
Traffic rate 2000 flows/sec
Cache Agent capacity (µj) 4000− 5000 pkts/sec
Propagation speed 2.3 ∗ 105 km/sec [14]
Scalability quota (qsj) 20

Fault-tolerance quota (qfti) {1, 3, 5}

random cache assignment (RCA), and b) minimum distance
based cache assignment (MDC) [7].

Figure 3 shows the minimum number of cache instances
required (as percentage of hardware switches) to meet scal-
ability and fault-tolerance requirements. This is obtained by
solving the integer programming problem 1 using the GLPK
solver. From the figure, we note that on increasing the number
of hardware switches, the number of cache instances required
reaches a constant percentage (approximately 15%) of the
hardware switches.

 10

 15

 20

 25

 30

 35

 40

 45

 50

10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
 i

n
st

a
n
c
e
s

(%
)

Hardware switches

TRC

Fig. 3: cache instances vs hardware switches

Figure 4 presents the average switch to software cache
delay with increasing traffic in the network. From the figure,
we observe that the proposed scheme outperforms the MDC
and RCA schemes in all cases. Overall, the proposed scheme,
TRC, reduces the average delay by approximately 10% and
35% compared to the MDC and RCA schemes, respectively.
The MDC scheme always associates a hardware switch with
the nearest cache instance (if quota permits), which leads
to load imbalance. This, in turn, leads to increased queuing
delay due to which MDC incurs additional overall delay.
On the other hand, the RCA scheme incurs significantly
more delay due to sub-optimal choices which increase both
propagation and queuing delay. However, it is evident from
the figure that increase in traffic rate does not significantly
increase the average delay. This implies that propagation
delay, which is independent of traffic rate, dominates the
queuing delay at the cache instances.

Figure 5 shows the total network overhead with increasing
traffic in the network. From the figure, we observe that the
proposed scheme outperforms the MDC and RCA schemes
in all cases. Overall, the proposed scheme, TRC, reduces the
network overhead by approximately 19% and 39% compared
to the MDC and RCA schemes, respectively. In contrast
to the delay results, we observe that increasing traffic rate
significantly affects the total network overhead. In particular,

 7

 8

 9

 10

 11

 12

 13

 14

100 500 1000 1500 2000

A
v
g
.
d
el

ay
 (

m
s)

Flows/sec

TRC
MDC
RCA

Fig. 4: Average delay with increasing flow rate

we observe that by taking into account the network overhead,
the relative performance of the TRC scheme improves with
increasing network traffic. Therefore, the proposed scheme
is applicable to scenarios with bursty traffic, such as SDN
for IoT applications [21], where it can dynamically re-assign
cache instances to improve performance.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

100 500 1000 1500 2000

O
v
er

h
ea

d
 (

p
k
ts

/s
ec

)
Flows/sec

TRC
MDC
RCA

Fig. 5: Network overhead with increasing flow rate

 0

 5

 10

 15

 20

 5 10 15 20 25 30

A
v
g
.
it

er
at

io
n
s

scalability (qj
s
)

TRC

Fig. 6: Iteration times with |C| = 5

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

A
v
g
.
it

er
at

io
n
s

CacheFlow instances (#)

TRC

Fig. 7: Iteration times with qs = 20

Figures 6 and 7 show the iteration times of the proposed
algorithm with varying values of scalability quota (qsj) and
number of cache instances, respectively. From the figures, it
is evident that the proposed algorithm is capable of quickly
converging to a solution in a few iterations. Therefore, it
can be used efficiently for dynamic re-assignment in varying
network conditions. From Figure 6, we observe that with

increasing scalability quota, iteration times decrease before
becoming nearly constant. In particular, it is interesting to
note that the iteration times converge to a value of 5, which
is equal to the number of cache instances. Additionally, from
Figure 7, we observe that the number of cache instances
do not significantly affect iteration time of the proposed
algorithm. However, C ≤ 5 makes the problem infeasible.
Therefore, the integer problem (1) is able to minimize the
number of software cache instances, thus reducing capital ex-
penditure and energy costs of running extra cache instances,
thereby making the proposed scheme sustainable.

VI. SECURITY IMPLICATIONS

The centralized logic and rule-based management of SDN
offer various advantages such as improved QoS and network
programmability for applications such as Internet of Things
[21], [22]. However, it introduces new security vulnerabilities
particular to SDN, such as denial-of-service by attacking the
centralized control plane or the limited flow-table [23]. The
centralized control plane may be attacked by an adversary
by sending packets intentionally crafted to trigger table-miss.
On the other hand, an adversary may attack the flow-table
by intentionally sending packets designed to install a large
number of flow-rules, thereby causing flow-table overflow.
Both of these attacks are assisted by the limited amount of
memory in the hardware TCAM.

The proposed scheme mitigates these issues using a two-
fold approach — a) considering a distributed software cache
which includes redundancy for fault-tolerance, and b) by
lowering the network overhead. The software-cache aug-
mented architecture offers the advantages of a large flow
space, which reduces the chances of table-miss. Further, the
traffic-aware mapping scheme can dynamically switch the
assignment of hardware switches to handle high load on one
of the cache instances. This, in turn, leads to lower overall
network overhead, as shown in Figure 5. The large flow-
space offered by the software-cache also makes it harder for
an adversary to cause a flow-table overflow attack. In this
regard, the cache-based approach is superior to compression
based approaches in terms of security, as reduces the chances
of malicious flows passing undetected, as shown in Figure
1. Therefore, the distributed architecture and traffic-aware
mapping of the proposed scheme ameliorates the effects of
denial-of-service attacks in SDN.

VII. CONCLUSION

In this paper, we proposed a traffic-aware rule cache as-
signment strategy to improve overall performance in software
defined networks. We formulated an integer programming
model to minimize the number of software caches, while
respecting scalability and fault-tolerance requirements. We
modeled the cache assignment problem using a many-to-
many matching framework, while considering the overall
delay and network overhead. Simulation results show that
the proposed scheme is capable of significantly reducing the
overall delay as well as the total overhead in the network,
which helps in mitigating denial-of-service security concerns
in SDN.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[2] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ‘One
Big Switch’ Abstraction in Software-defined Networks,” in Proc.
of the ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT), New York, USA, 2013, pp. 13–24.

[3] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect
of forwarding table size on SDN network utilization,” in Proc. of the
IEEE Conference on Computer Communications (INFOCOM), April
2014, pp. 1734–1742.

[4] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco,
J. Moulierac, and G. Urvoy-Keller, “Too Many SDN Rules? Compress
Them with MINNIE,” in Proc. of the IEEE GLOBECOM, Dec. 2015,
pp. 1–7.

[5] N. Saha, S. Bera, and S. Misra, “QoS-Aware Adaptive Flow-rule Ag-
gregation in Software-Defined IoT,” in Proc. of the IEEE GLOBECOM,
2018.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks,” in
Proc. of the ACM SOSR, New York, USA, 2016, pp. 6:1–6:12.

[7] A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-
based approach for improving SDN scalability,” in Proc. of the IEEE
INFOCOM Workshop, April 2016, pp. 610–615.

[8] H. Li, S. Guo, C. Wu, and J. Li, “FDRC: Flow-driven rule caching
optimization in software defined networking,” in Proc. of the IEEE
ICC, June 2015, pp. 5777–5782.

[9] H. Huang, S. Guo, P. Li, W. Liang, and A. Y. Zomaya, “Cost
minimization for rule caching in software defined networking,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp.
1007–1016, April 2016.

[10] Z. Han, Y. Gu, and W. Saad, Matching theory for wireless networks.
Springer, 2017.

[11] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,”
in Proc. of the IEEE International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2014,
pp. 569–574.

[12] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
in Proc. of the IEEE INFOCOM, April 2016, pp. 1–9.

[13] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proc. of the
Workshop on ACM HotSDN, 2014, pp. 1–6.

[14] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
breakdown of end-to-end latency in a tcp/ip network,” International
Journal of Parallel Programming, vol. 37, no. 6, pp. 556–571, 2009.

[15] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[16] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Information Processing Letters, vol.
100, no. 4, pp. 162–166, 2006.

[17] M. Sotomayor, “Three remarks on the many-to-many stable matching
problem,” Mathematical social sciences, vol. 38, no. 1, pp. 55–70,
1999.

[18] A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game-
Theoretic Modeling and Analysis. Cambridge University Press, 1992.

[19] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow Software-Defined Networks,” in
Proc. IEEE NOMS, 2014, pp. 1–8.

[20] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, October 2011.

[21] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware QoS Routing
in Software-Defined IoT,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2018, doi: 10.1109/TETC.2018.2847296.

[22] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, Dec 2017.

[23] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow
sdn networks,” in Proc. of the IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015, pp. 1322–1326.

