
Dynamic Network Slice Assignment in
Software-Defined IoT Networks

Niloy Saha and Sudip Misra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, 721302, India

Email: niloysaha@iitkgp.ac.in, sudipm@iitkgp.ac.in

Abstract—Network slicing using technologies such as software-
defined networking is a promising approach to address the
diverse quality-of-service (QoS) requirements of Internet of
Things (IoT) applications. Network slicing allows a single phys-
ical network to be transparently divided into separate, logically
independent networks, with distinct service levels per slice.
This allows the network to support the diverse requirements of
different IoT verticals ranging from connected vehicles to smart
agriculture. In this paper, we propose a dynamic network slice
assignment scheme for software-defined IoT networks, where
each application type is assigned to a distinct slice controller
depending on its QoS requirements. We formulate the optimal
mapping between network slices and slice controllers as an
integer programming problem, and show that the proposed
scheme is capable of significantly reducing the number of QoS
violations compared to existing controller mapping schemes.
Further, we present a scheduling scheme to dynamically re-
compute the optimal mapping, based on optimal stopping theory,
while taking into consideration the temporal variations in traffic
and link latencies. Simulation results show that the proposed
scheduling strategy is able to reduce the number and expected
cost of re-computations, while remaining within the QoS viola-
tion tolerance limit.

Index Terms—Internet of Things, Network Slicing, Software-
Defined Networking

I. INTRODUCTION

The Internet of Things (IoT) encompasses a massive variety
of use-cases, ranging from smart agriculture to connected
vehicles, which require diverse quality of service (QoS) from
the network. Next-generation networking technologies such
as software-defined networking (SDN) have shown significant
promise in addressing these requirements, by simplifying
network management, and making the network flexible [1]. In
particular, the concept of network slicing allows the creation
of multiple virtual networks (slices), customized for particular
applications, on top of a given physical network [2]. These
virtual networks offer mutual isolation, and independent con-
trol and management, which makes them particularly well
suited to address the diverse requirements of IoT applications.
Network slicing using SDN allows each slice to be controlled
independently by a separate SDN controller [3], [4]. Thus, by
creating a separate slice for each application, the SDN control
application can be tailored to meet application-specific QoS
requirements of IoT [5].

An SDN controller provides fine-grained control over flows
using instructions in the form of match-action flow-rules at
the switches. On flow arrival at a switch, if a match is

not found, a request is sent to the controller, which then
places the appropriate flow-rule(s) to handle the flow. Thus,
the controller response time plays a significant role in the
delay experienced by the flows. This implies that the delay
experienced by a network slice depends on the resource ca-
pacity of the associated slice controller1. Machine-to-machine
(M2M) applications are expected to be a large part of IoT
[6], where some applications are mission-critical and have
stringent latency requirements, such as connected vehicles and
smart healthcare, while others can tolerate some amount of
delay, such as smart agriculture [7]. Thus, the network slices
must be mapped to the slice controllers while taking into
consideration the distinct application-specific requirements,
and the resource capacities of the controllers.

C1 C2 C3

S1 S3S2

Slice Controllers

Flow-spaces

Alternate mapping

V1 V2

S1 S2 S3

S2S1

Physical Network

S3
S2

e-Health

S3 Smart Home

Smart City

Network Slices

Proxy Controller

Fig. 1: SDN-based network slicing for IoT

Figure 1 shows the concept of network slicing using SDN,
with each IoT application allocated a separate network slice. A
proxy controller is used to logically partition the address space
(of flow-rules) into separate flow-spaces. Each flow-space
represents the address range of flows belonging to a distinct
network slice and is used to control all traffic belonging to that
slice. Thus, an SDN controller manages a network slice using
its corresponding flow-space. Figure 1 (right) shows the virtual
topologies associated with each network slice, with each slice
controlling traffic from a particular IoT application. In the
figure, the colored boxes below the switches s1, s2, and s3

represent the number of requests belonging to a particular
flow-space, generated from each switch. From the figure, we
observe that there are several choices for assigning a flow-
space to a slice controller. For example, as opposed to the
mapping shown in the figure (shown with solid lines), the
blue flow-space could have been mapped to controller c2,
while controller c3 controlled the green flow-space. Note that

1Since the controller response time is dependent on its resource capacity.

to get uniform treatment for all flows belonging to a network
slice, the corresponding flow-space has to be mapped to a
single controller, i.e., fractional allocations are not permitted.
The problem of selecting the appropriate mapping between
flow-spaces and controllers, while considering the dynamic
network conditions, and requirements of the IoT applications
is challenging. Thus, in this paper, we propose a flow-space
to controller mapping (FCM) scheme to address this issue.
Additionally, the temporal variation in IoT traffic and link
latencies in IoT networks can cause the optimal mapping to
become sub-optimal over time, in which case the mapping
must be re-computed. Therefore, we propose a dynamic
scheduling strategy to re-compute the mapping, so that the
expected cost of such re-computation is minimized.

The rest of the paper is structured as follows. In Section
II, we discuss the existing literature. In Section III we present
the optimal flow-space to controller mapping problem. The
dynamic scheduling strategy is presented in Section IV. We
analyze the performance of the proposed scheme in Section
V, and finally conclude the paper in Section VI.

II. RELATED WORK

We analyze the relevant state-of-the-art from two perspec-
tives — network slicing, and optimal controller mapping.

Network Slicing using SDN. Recent works [2], [8] iden-
tify SDN as a key enabler for network slicing in IoT and
5G networks. Sherwood et al. [3] proposed Flowvisor, a
framework for network slicing using OpenFlow, the de-facto
protocol for SDN. In Flowvisor, a transparent proxy controller
was introduced between the SDN switches and controllers,
in order to slice various network resources, such as address
space, bandwidth, and CPU. This concept was extended by
Salvadori et al. [4] to enable the creation of generic bandwidth
guaranteed virtual topologies, on top of a shared physical net-
work. Chaabnia and Meddeb [9] showed how network slicing
could be used to provide differential QoS in software-defined
home networks. The authors categorized the applications into
different classes, and each class was assigned to a specific
network slice, created using Flowvisor. Similar to [4], [9],
in our work, we adopt the Flowvisor concept for creating
network slices using flow-spaces.

Optimal Controller Mapping. Recent works [10]–[13]
proposed dynamic controller mapping in SDN for improved
resource utilization. Wang et al. [10] studied dynamic map-
ping between SDN switches and controllers by formulating
the optimal assignment problem as a matching game. The
authors showed that the matching-based approach reduced
the average response time and total overhead in the net-
work. However, they considered one-to-one mapping between
switches and controllers, and did not consider network slicing.
Sridharan et al. [11] studied fractional mapping between
switches and multiple controllers. The authors considered
that the switches were simultaneously connected to multiple
controllers, and a fraction of the flow-requests generated at
a switch was sent to each controller. The authors showed
that fractional mapping was capable of more efficient load

balancing, in comparison to one-to-one mapping. AL-Tam and
Correia [12] also studied fractional mapping between switches
and controllers; however, they focused on minimizing the
number of new assignments (state changes) under dynamic
network conditions. In our recent work [13], we showed
how SDN network slicing could be leveraged to minimize
the overall controller response time, with distributed (but not
independent) SDN controllers. The proposed scheme differs
from the existing works in two aspects. First, we focus on the
optimal mapping between network slices and SDN controllers.
Thus, each controller is responsible for traffic from exactly
one flow-space. This is in contrast to the fractional mapping
schemes proposed in [11], [12], where a controller serves
traffic from all applications, and allows us to model the
controller response time for a particular application. Second,
we propose a dynamic scheduling strategy to re-compute
the controller assignment, so that the expected cost of re-
computation is minimized.

III. OPTIMAL FLOW-SPACE MAPPING

A. System Model

We consider a virtualized SD-WAN network, with dis-
tributed proxy controllers and multiple slice controllers, as
shown in Figure 1. Let C, V, S, and F denote the set of
SDN slice controllers, set of proxy controllers, SDN-enabled
switches, and flow-spaces, respectively. Further, let L denote
the set of links between the switches, with each link l ∈ L
having an associated propagation delay δl. Aggregated IoT
traffic from various heterogeneous networks arrive at the
switches S, after passing through IoT gateways [5]. Although
the traffic from individual IoT devices may be bursty or
periodic in nature, the aggregated traffic from different sources
arriving at a switch can be approximated as a Poisson process
[14]. After arrival at a switch, if a flow does not find any
matching flow-rule(s), a request is sent to the controller in the
form of a packet-in message. Packets belonging to the flow
can only be forwarded once the packet-in request has been
processed and an appropriate flow-rule has been placed at the
switch. Thus, the delay experienced by a flow consists of — a)
packet-in generation delay at the switch, b) propagation delay
from switch to controller, c) packet-in processing delay at the
controller, and d) delay incurred in placing the appropriate
flow-rule at the switch. Apart from this, the intermediate
virtualization layer in the proposed scheme also adds a non-
negligible constant overhead. The delay factors (a) and (d) can
be significantly reduced using various existing schemes [15],
and are independent of the controller association. Thus, we use
a constant term ∆net to represent the net delay contributed by
packet-in, proxy overhead, and flow-rule placement, and focus
mainly on the two delays affected by controller association —
propagation delay, and packet-in processing delay. The proxy
controller V acts as an intermediary between the SDN slice
controllers and the data-plane switches. To avoid a single point
of failure, the proxy controller is based on a distributed SDN
controller. The different functional components of the proxy
controller are shown in Figure 2.

Flowspace
Orchestrator

SDN Slice Controller

Application
Manager

REST API

Virtualization
Layer

OpenFlow

OpenFlow

Packet-in
Generator

MPLS

SDN Switch

Fig. 2: Overview of the proxy controller

The virtualization layer is based on the Flowvisor concept
proposed in [3], [4], and is used to slice the SDN network us-
ing the OpenFlow protocol. It virtualizes the address space at
SDN switches into mutually independent flow-spaces, which
allows a slice controller to have independent control over all
flows belonging to a particular flow-space. The flow-space
orchestrator is responsible for the dynamic mapping between
the flow-spaces and slice controllers. It collects the necessary
network statistics (such as link latencies, and incoming request
rate) by interfacing with the virtualization layer, and runs
the algorithm to solve the FCM problem. Since each slice
controller is dedicated to a particular IoT use-case, the control
application running on them may be specifically tailored to
address the characteristics and requirements of that use-case.
The application manager component of the proxy controller is
responsible for copying the necessary application binaries for
a particular IoT application to the appropriate slice controller
using a REST API. Note that the application binaries may
be stored on the proxy controller itself, or may be pulled in
from a remote server. We also introduce a packet-in generator
component in the proxy controller, connected to the switches
using a short label-switched path. This is used to offload
the packet-in generation task from the limited switch CPUs
to the more capable proxy controller, and thus, significantly
reduce the delay of packet-in generation [15]. This reduction
in the delay is used to offset the additional overhead of the
virtualization layer. We leave the analysis of the net delay of
the virtualization layer, as future work.

The Poisson arrivals at the switches imply that the prob-
abilistic flow-rule miss and subsequent packet-in generation
rate is also Poisson [16]. Let λfs (t) be the packet-in generation
rate at switch s ∈ S, belonging to flow-space f ∈ F , in time
period t. We consider discrete time intervals t which allows
us to accurately measure packet-in requests. The packet-in
requests from s are sent to the distributed proxy controller
instance v ∈ V , which is associated with switch s. For
simplicity, we consider the mapping xsv between switch s
and proxy controller v to be static, following a simple load-
balancing scheme2, as used in popular SDN controllers, such
as ONOS3. However, the proposed scheme is also applicable
to dynamic mapping. Therefore, at v, the total request rate
belonging to flow-space f is given as γfv (t) =

∑
s λ

f
s (t)xsv .

B. Optimization Problem for Optimal Mapping

1) Decision variables: We consider binary variables yfvc(t)
to denote whether flow-space f ∈ F from proxy controller

2The switches are distributed equally among the proxy controllers.
3https://www.opennetworking.org/onos/

v ∈ V is mapped to slice controller c ∈ C in time period
t. We also consider the auxiliary binary variable gfc (t) to
denote whether flow-space f is mapped to slice controller c,
irrespective of the proxy controller instance. Mathematically,
gfc (t) = 1, if

∑
v y

f
vc(t) > 0, and gfc (t) = 0, otherwise.

2) Objective: Our objective is to find the appropriate
mapping of flow-spaces to the slice controllers, such that
the control overhead and service cost is minimized, while
satisfying the requirements of the IoT applications. The slice
controllers C may be connected to the proxy controller in-
stances V through various multi-hop paths. The asynchronous
packet-in messages traversing these multi-hop paths generate
control overhead, that should be kept to a minimum. The
request arrival rate at controller c from proxy v is given as
θvc(t) =

∑
f γ

f
v (t)yfvc(t). Therefore, the control overhead at

slice controller c for time period t is given as φctrlc (t) =∑
v hvcθvc(t), where the term hvc denotes the hop-count

between v and c. Let ψservc be the unit cost per request for
using slice controller c, which includes operating expenses,
such as energy and maintenance costs. The total request
arrival rate at slice controller c, from all proxy controllers,
is given as θc(t) =

∑
v θvc(t). Therefore, the service cost

for using slice controller c during time period t, is given as
φservc (t) = ψservc θc(t).

3) Constraints: There is a one-to-one mapping between
flow-spaces f ∈ F and slice controllers c ∈ C. Mathemati-
cally: ∑

f∈F

gfc = 1 ∀c ∈ C,
∑
c∈C

gfc = 1 ∀f ∈ F (1)

Further, the request rate at a slice controller c should be
less than its service rate µc. Mathematically,

θc(t) ≤ βµc ∀c ∈ C (2)

where the term β ∈ (0, 1) represents the maximum allowed
utilization of the processing resources at c. We consider an in-
band communication model, where the data and control traffic
share the same links l ∈ L. The rationale behind this is that
a dedicated control network (out-of-band) over long distances
would incur significant deployment costs in a WAN. Thus, the
propagation delay from proxy controller v to slice controller c
is given as ∆prop

vc =
∑
l∈Pvc

δl, where Pvc denotes the shortest
path from proxy controller v to slice controller c. Further,
considering the slice controller as a M/M/1 queue, and using
Little’s theorem, the average response time (including waiting
and processing time) of a packet-in message at slice controller
c is given as ∆proc

c (t) = 1/(µc − θc(t)). Therefore, the max-
imum delay experienced by an IoT application (represented
by flow-space f) on associating with slice controller c ∈ C is
given as ∆f

c = maxv(∆
prop
vc yfvc) + ∆proc

c (t)gfc + ∆net. This
delay should be less than the delay requirements of the IoT
application. Mathematically,

∆f
c ≤ ∆f

max ∀c ∈ C, ∀f ∈ F (3)

where the term ∆f
max represents the maximum delay tolerance

of the IoT application belonging to flow-space f . Given the
decision variables, objectives, and constraints defined above,
the flow-space to controller mapping (FCM) problem can be
modeled as an integer program (IP), as follows:

min
Y

φ(t) =
∑
c∈C

φctrlc (t) +
∑
c∈C

φservc (t)

subject to (1), (2), (3).
(P1)

The problem (P1) is non-linear due to ∆proc
c (t), and is

solved using the APOPT4 MINLP solver. For large instances,
the non-linearity in (P1) can be approximated using a piece-
wise linear function, and thus solved efficiently using ILP
solvers such as Gurobi5.

IV. DYNAMIC SCHEDULING

In this Section, we present a dynamic scheduling scheme
to re-compute the flow-space mapping, to better reflect a real-
world scenario.

Let Y0 denote the initial solution of the problem (P1),
consisting of the assignment of 0 or 1 to the binary variables
yfvc(t) at time t = 0. In a dynamic network environment,
the link latencies δl can change with time due to factors
such as network congestion. The link latency variations, along
with the temporal variation in the packet-in rate λfs (t) affects
Equations (2) and (3), and leads to sub-optimality in Y0.
Thus, the flow-space mapping should be revised periodically
by re-computing the integer program (P1). However, the
change in mapping is associated with a cost — in terms of
communication overhead between the proxy controllers and
the slice controllers. Revising the flow-space mapping at each
time instance will lead to high overhead, which is not desired.
Thus, assuming that the system can tolerate some amount of
QoS violations (bounded), we focus on finding the appropriate
time to revise the flow-space mapping, so that the expected
cost is minimized.

Given two solutions Y0 and Yt with t > 0, the cost of re-
mapping the flow-spaces is given as R0,t =

∑
vcf 1(yfvc(0) 6=

yfvc(t)), where 1(A) is an indicator function which takes
value 1 if event A is true, and 0, otherwise. Thus, the
expected cost of re-mapping from time 0 to t is given as
E[R0,t] = |V ||C||F |P (yfvc(0) 6= yfvc(t)). The temporal
variations in link latencies and traffic rate affect the QoS
of a flow-space by impacting Equations (2) and (3). Thus,
to define the QoS violations of flow-space f at time t, we
consider an indicator variable Qft , which takes the value 1
when (1(θc > βµc) ∨ 1(∆f

c > ∆f
max)) ∧ gfc = 1, and 0

otherwise. In other words, Qft indicates QoS violation of a
flow-space f , by checking Equations (2) and (3) and whether
the particular slice controller c is assigned to f . Therefore, the
total QoS violations at time t is given as Qt =

∑
f Q

f
t . Our

aim is to keep track of the development of Qt with time, and
determine the optimal time t∗ to re-compute the flow-space
mapping in order to minimize the expected cost E[R0,t∗]. We

4http://apmonitor.com/
5https://www.gurobi.com/

utilize the principles of optimal stopping theory [17] to find
the optimal time t∗ for re-computing the flow-space mapping.
The cumulative QoS violations from t = 0 upto time t is
given as Zt =

∑t
i=0Qi. Let Ω denote the tolerance limit of

QoS violations. If Zt > Ω, we should re-compute the flow-
space mapping with expected cost E[R0,t]. For simplicity, we
consider a fixed Ω for all flow-spaces; however, the model
may be extended to consider separate tolerance values for
different flow-spaces. We want to go as long as possible
without revising the flow-space mapping; thus, our aim is
to maximize Zt without violating Ω. Therefore, we define
a reward function ϕ(Zt) such that ϕ(Zt) = Zt, if Zt ≤ Ω,
and ϕ(Zt) = −E[R0,t], otherwise.

Thus, the problem is to find the optimal time t∗ such that
t∗ = supt≥0E[ϕ(Zt)]. To solve this problem, we use the one
step look ahead (OSLA) rule, which gives a re-computation
time τ = inft≥0{ϕ(Zt) ≥ E[ϕ(Zt+1) | Ft]}, where Ft is
the σ-algebra generated by Zt and denotes the information
available until time t, i.e., the sequence Z1, · · · , Zt. In other
words, the OSLA rule suggests re-computing the flow-space
mapping at the first time instance in which the expected
reward is as high as continuing to the next instance, and then
re-computing. First, we apply the OSLA rule to the given
problem, and then show that the time τ given by it is indeed
optimal, i.e., τ = t∗.

OSLA rule. Given the information (or filtration) Ft, and
using the OSLA rule, we re-compute the flow-space mapping
at the first time instance which gives ϕ(Zt) ≥ E[ϕ(Zt+1) |
Ft] with the event {Zt ≤ Ω} ∈ Ft. Mathematically, we have

E[ϕ(Zt+1) | Zt ≤ Ω] =

E[Zt+1 | Zt ≤ Ω, Zt+1 ≤ Ω]P (Zt+1 ≤ Ω)

+ E[Zt+1 | Zt ≤ Ω, Zt+1 > Ω]P (Zt+1 > Ω) [using ϕ(Zt)]
= E[Zt +Qt+1 | Qt+1 ≤ Ω− Zt]P (Qt+1 ≤ Ω− Zt)
+ E[−E[R0,t] | Qt+1 > Ω− Zt]P (Qt+1 > Ω− Zt)

=

Ω−Zt∑
q=0

(Zt + q)PQt+1
(q)− E[R0,t]FQt+1

(q)

[since Qt+1 is a random variable and independent of Zt]

where PQt+1
(q) and FQt+1

(q) denote the probability mass
function (PMF) and cumulative distribution function (CDF) of
the random variable Qt+1. Therefore, according to the OSLA
rule, starting from t = 0, we revise the flow-space mapping
at the first time instance τ such that

τ = inf
t≥0
{ϕ(Zt) ≥ E[ϕ(Zt+1) | Zt ≤ Ω]}

= inf
t≥0

Zt ≥
[Ω−Zt∑
q=0

(Zt + q)PQt+1(q)− E[R0,t]FQt+1(q)
]

(4)

Theorem 1. The OSLA rule is optimal for monotone stopping
problems [17].

Corollary. The OSLA rule in Equation (4) is optimal for the

FCM problem, i.e., τ = t∗.

Proof. Since Zt is non-decreasing with t, the difference
E[ϕ(Zt+1) | Ft] − ϕ(Zt) is non-increasing when Zt ≤ Ω.
Thus, the stopping problem given as {E[ϕ(Zt+1) | Zt ≤ Ω]}
is monotone, and hence, by Theorem 1, the OSLA rule for
the FCM problem given in Equation (4) is optimal.

Time Complexity. Equation (4) requires summing over
PQt+1

(q) values from 0 to Ω − Zt. This can be done by
recursively summing upto time t− 1, and from it, subtracting
the sum over E[Zt −Zt−1] terms, which can be at most |F |.
Thus, the time complexity of the dynamic scheduler is O(|F |).

V. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed scheme, we
consider two experiments using a python-based simulator.
First, we compare the performance of the optimal flow-space
to controller mapping scheme (FCM) presented in Section
III-B to the fractional controller mapping scheme (SFM)
presented in [11]. Second, we analyze the performance of the
dynamic scheduler presented in Section IV by comparing it to
two alternative strategies. We consider a scale-free Barabasi-
Albert model for the data plane topology, and the switches are
assigned to the proxy controllers in a uniform random manner.
The different simulation parameters are presented Table I.

TABLE I: Simulation parameters

Parameter Value Parameter Value
Switches 20 Proxy controllers 2
Slice controllers 10 Flow-spaces 10
Controller capacity 100− 200 β 0.9

The proposed FCM scheme assigns a distinct slice con-
troller to a particular flow-space, depending on the QoS
requirements of the traffic type flowing through that flow-
space. On the other hand, the fractional mapping scheme
(SFM) attempts to minimize the overall delay by sending a
fraction of the flows to different controllers. The controller
mapping scheme is dependent on the traffic characteristics;
thus, to show the effect of different types of IoT traffic, we
consider a mix of real-time, near real-time, and delay-tolerant
IoT traffic. The distribution of the mix of traffic types and
their delay tolerances are shown in Table II.

TABLE II: Traffic types

Type Delay (ms) Dist. 1 Dist. 2 Dist. 3
Real-time 10− 15 0.1 0.3 0.6
Near real-time 30− 50 0.3 0.3 0.3
Delay tolerant > 100 0.6 0.4 0.1

Figure 3 shows the percentage of QoS violated flows for
the FCM and SFM schemes, across the three traffic distribu-
tions, while varying the number of flows from 200 to 1000.
From the figure, we observe that the proposed FCM scheme
outperforms the SFM scheme in all cases. In particular, the
relative performance improvement is particularly significant
in Distribution 1, where the FCM scheme does not incur any
QoS violations upto 600 flows. On average, in Distribution 1,

FCM achieves approximately 70% less QoS violations than
SFM. The rationale behind this is that in contrast to SFM, the
FCM scheme does not attempt to balance the load across the
slice controllers. In FCM, the slice controllers are assigned to
specific flow-spaces with varying traffic rates, and thus have
different processing delays ∆proc

c . Thus, real-time traffic can
be mapped to a slice controller with small processing delay.
On the other hand, in the SFM scheme, the fractional mapping
achieves uniform load balancing across the controllers, which
increases the processing delay and violates the QoS of real-
time traffic.

0

4

8

12

16

2 4 6 8 10

0

4

8

12

16

2 4 6 8 10

Q
o
S

v
io

la
ti

on
s

(%
)

Number of flows ×102

Distribution 1

FCM SFM

Q
o
S

v
io

la
ti

o
n

s
(%

)

Number of flows ×102

Distribution 2

Fig. 3: Comparison of controller mapping schemes

In Distribution 2, having an almost equal mix of 3 types of
traffic, we observe that FCM performs worse than in Distri-
bution 1. This is due to the fact that with an increase in real-
time traffic, the load on the slice controller assigned to real-
time traffic increases, thereby leading to increased processing
delay. From the figure, we observe that the proposed FCM
scheme performs best with Distribution 1, which reflects the
expected traffic composition of IoT, with the majority being
delay-tolerant, and few delay-sensitive.

−20

0

20

40

60

0 20 40 60 80
0

4

8

12

16

0 20 40 60 80

D
ev
ia
ti
on

fr
om

φ
(0
)

Time instance (t)

Objective

φ(t)

Q
oS

v
io
la
ti
on

s
(%

)

Time instance (t)

QoS violations

Qt

Fig. 4: Variation of objective φ(t) and QoS violations Qt with
time

Next, we analyze the performance of the proposed flow-
space mapping re-computation strategy. Figure 4 shows the
variation in the objective function value φ(t) and the QoS
violations Qt with time. We observe that due to the temporal
variations in link latencies and traffic rates, the objective func-
tion value given by optimal flow-space assignment (Equation
(P1)) deviates significantly from the optimal value at t = 0.
As shown in the figure, the objective can deviate from −20%
to 40% from the optimal objective φ(0). From the figure,
we also observe that temporal variations also lead to QoS
violation of 10 − 12% of the flows, due to violating either
the delay constraint (Equation (3)) or processing constraint
(Equation (2)).

The optimal stopping rule proposed in Equation (4) involves
learning the PMF of the distribution of QoS violations in order

to calculate the time t∗. Figure 5(a) shows the distribution of
the QoS violations Qt with 1000 flows in the network. The
PMF PQt+1(q) was learnt from the observed data of 1000 time
instances using kernel density estimation (KDE). Figure 5(b)
shows the performance of three different strategies for flow-
space re-computation — the optimal stopping rule strategy
proposed in Section IV (top), re-computation at every t = 50
time instances (middle), and re-computing once 90% of the
QoS violation limit Ω is reached (bottom). From the figure,
we observe that the fixed interval strategy at every 50th time
instance performs the worst, both in terms of number of the
re-computations and the number of times it crosses the limit
Ω. If the cumulative violation Zt exceeds Ω in-between 50
time instances, the fixed interval strategy is unable to react and
performs poorly. This can be rectified by setting the interval to
a low value at the cost of increasing the expected cost E[R0,t].
From the figure, it is evident that the optimal stopping rule
strategy performs the best, with a 20% (on average) reduction
in the number of re-computations required over the simple
threshold-based scheme. The proposed scheme adapts to the
temporal variation of Qt, as evidenced by the second re-
computation being triggered much later compared to the first.
Both the proposed scheme and the threshold-based scheme
maintain the QoS limit Ω, however, on average, the proposed
scheme achieves an approximate reduction of 34% in the
expected cost E[R0,t].

0.000

0.010

0.020

0 100 200

0

50

100

0 250 500 750 1000

0

50

100
0

50

100

P
Q

t
+

1
(q

)

Time instance (t)

(a)

Time instance (t)
t = t∗

C
u

m
u

la
ti

ve
Q

oS
v
io

la
ti

on
s

t = 50

(b)

t | Zt = 0.9Ω

Fig. 5: QoS violations with a) showing distribution of Qt+1,
and b) showing cumulative QoS violations Zt for the three
different schedulers

From the analysis above, we see that the proposed flow-
space to controller mapping scheme is capable of addressing
the QoS requirements of IoT traffic consisting of a mixture of
real-time, near real-time, and delay-tolerant flows. Further, the
optimal stopping theory based scheduler is capable of adapting
to the dynamic variations in traffic and link latencies in IoT
networks.

VI. CONCLUSION

In this paper, we proposed a dynamic network slice as-
signment scheme for software-defined IoT networks, where
each network slice (flow-space) is assigned to a distinct
slice controller, based on its QoS requirements. Simulation
results show that the proposed optimal flow-space to con-
troller mapping (FCM) scheme is capable of significantly

reducing (up to 70%) the QoS violations while considering
IoT traffic consisting of real-time, near real-time, and delay-
tolerant flows. Further, we proposed a dynamic scheduler,
based on optimal stopping theory to take into account the
temporal variations in link latencies and traffic, and trigger
re-computation of flow-space mapping. Results show that the
dynamic scheduling strategy reduces the number and cost of
re-computations by 20% and 34% compared to the threshold-
based strategy.

ACKNOWLEDGMENTS

The authors acknowledge the support received from the
University Grants Commission (UGC)-UK India Education
Research Initiative (UKIERI) Joint Research Programme
(UKIERI-III) under project file No. 184-17/2017(IC).

REFERENCES

[1] P. Sarigiannidis, T. Lagkas, S. Bibi, A. Ampatzoglou, and P. Bellavista,
“Hybrid 5G optical-wireless SDN-based networks, challenges and open
issues,” IET Networks, vol. 6, no. 6, pp. 141–148, nov 2017.

[2] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Commun. Mag.,
vol. 55, no. 5, pp. 80–87, 2017.

[3] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A Network Virtualization Layer,”
OpenFlow Switch Consortium, Tech. Rep., 2009.

[4] E. Salvadori, R. Doriguzzi Corin, A. Broglio, and M. Gerola, “Gener-
alizing Virtual Network Topologies in OpenFlow-Based Networks,” in
Proc. IEEE GLOBECOM, 2011, pp. 1–6.

[5] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware QoS Routing
in Software-Defined IoT,” IEEE Trans. Emerging Top. Comput., 2018,
doi: 10.1109/TETC.2018.2847296.

[6] P. Sarigiannidis, T. Zygiridis, A. Sarigiannidis, T. D. Lagkas, M. Obai-
dat, and N. Kantartzis, “Connectivity and coverage in machine-type
communications,” in Proc. IEEE International Conference on Commu-
nications (ICC), May 2017.

[7] J. Mocnej, A. Pekar, W. K. G. Seah, and I. Zolotova, “Network Traffic
Characteristics of the IoT Application Use Cases,” Victoria University
of Wellington, New Zealand, Tech. Rep., 2017.

[8] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT Architecture with
NFV Implementation,” in Proc. IEEE GLOBECOM Workshops, Wash-
ington, DC USA, Dec. 2016, pp. 1–6.

[9] S. Chaabnia and A. Meddeb, “Slicing aware QoS/QoE in software
defined smart home network,” in Proc. IEEE/IFIP NOMS, 2018, pp.
1–5.

[10] T. Wang, F. Liu, and H. Xu, “An Efficient Online Algorithm for
Dynamic SDN Controller Assignment in Data Center Networks,”
IEEE/ACM Trans. Networking, vol. 25, no. 5, pp. 2788–2801, 2017.

[11] V. Sridharan, M. Gurusamy, and T. Truong-Huu, “On Multiple Con-
troller Mapping in Software Defined Networks With Resilience Con-
straints,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1763–1766, 2017.

[12] F. AL-Tam and N. Correia, “Fractional Switch Migration in Multi-
controller Software-defined Networking,” Elsevier Computer Networks,
vol. 157, pp. 1 – 10, 2019.

[13] S. Bera, S. Misra, and N. Saha, “Traffic-aware Dynamic Controller
Assignment in SDN,” IEEE Transactions on Communications, pp. 1–1,
2020, doi: 10.1109/TCOMM.2020.2983168.

[14] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. E. Heegaard,
“Modeling of Aggregated IoT Traffic and Its Application to an IoT
Cloud,” Proceedings of the IEEE, vol. 107, no. 4, pp. 679–694, 2019.

[15] K. He, J. Khalid, S. Das, A. Akella, E. L. Li, and M. Thottan,
“Mazu: Taming Latency in Software Defined Networks,” University of
Wisconsin-Madison, Tech. Rep., 2014.

[16] Y. Goto, B. Ng, W. K. Seah, and Y. Takahashi, “Queueing analysis of
software defined network with realistic OpenFlow–based switch model,”
Computer Networks, vol. 164, p. 106892, 2019.

[17] T. S. Ferguson, Optimal Stopping and Applications. UCLA, 2008.
[Online]. Available: https://www.math.ucla.edu/∼tom/Stopping/

