
DynamiTE: Dynamic Traffic Engineering in
Software-Defined Networks

Samaresh Bera, Sudip Misra, and Niloy Saha
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, 721302, India
Email: s.bera.1989@ieee.org, smisra@sit.iitkgp.ernet.in, niloysaha@iitkgp.ac.in

Abstract—Control overhead is an important issue in software-
defined network (SDN). Specifically, PACKET-IN messages are
generated and sent to SDN controller on receiving a new
flow at a switch. This leads to the worst situation when the
ternary content-addressable memory (TCAM) available at the
switch is fully utilized. In this paper, we propose a dynamic
traffic engineering scheme, DynamiTE, to minimize the control
overhead at the SDN controller, while minimizing the number of
PACKET-IN messages. We propose a greedy heuristic approach
to determine the optimal number of switches required to have
higher TCAM, termed as candidate switches, compared to the
other switches in the network. On receiving a new flow, a
fully occupied switch directly forwards the flow to a candidate
switch without generating PACKET-IN, which, in turn, helps to
minimize number of control messages in the network. Further, a
packet-tagging method is applied to notify the SDN controller
about the congestion occurred at the fully occupied switch.
Simulation results show that the proposed approach is capable
of reducing the number of PACKET-IN and congestion in the
network by placing optimal number of candidate switches in
the network. Particularly, the number of PACKET-IN is reduced
by 10%, compared to the OpenFlow-based forwarding schemes
(OFS), and the number of packets experiencing congestion in
the network is reduced by 38%, compared to the randomized
forwarding scheme (RFS).

Index Terms—Traffic engineering, Software-defined networks,
Heuristic optimization, Packet-tagging

I. INTRODUCTION

The inherent features of software-defined networking (SDN)
enable real-time programmability of networking devices, while
decoupling the control- and data- plane from the traditional
forwarding devices. Different control logics are decided at
the control plane, while the data plane simply forwards the
traffic based on the logic decided at the former. Thus, the
complexity involved in network management in the SDN-
enabled network is reduced significantly compared to that of
the traditional networks. Dynamic traffic engineering is one
of the important aspects in SDN [1], [2]. The SDN-enabled
switches forward the traffic based on the policies decided by
the SDN controller. Recently, Agarwal et al. [3] proposed an
SDN-based traffic engineering scheme, and showed that the
SDN-based approaches are capable of forwarding the traffic in
a more efficient manner compared to the non-SDN networks.
OpenFlow [4] and flow-table rules are the key concepts to have
adequate traffic engineering in SDN. To implement the flow-
table rules, fast processing memory available at the forwarding

devices (such as TCAM1) are utilized. However, such fast
processing memory available at SDN switches is limited and
power hungry. Therefore, limited number of rules can be
inserted at a time at the switches.

On receiving a new traffic, the switch sends a PACKET-IN
message to the controller. Consequently, the controller imple-
ments the flow-rules at the switches based on the available rule
capacity, while considering other parameters as well. If rule-
capacity is fully utilized at the switch, an existing flow-rule
is deleted, and the new one is inserted without considering
the status (i.e., active or passive) of the existing flow-rule.
As a result, once the switch receives a packet associated with
the deleted flow-rule again, it sends the PACKET-IN to the
controller, and the same procedure is followed. Consequently,
control message overhead increases, as the flow-rules are
deleted and inserted in a round-robin manner. Recently, Qiao

Fig. 1: An example of the scheme proposed by Qiao et al. [5]

et al. [5] proposed a scheme in which a switch randomly
forwards the traffic to one of its outgoing ports, instead
of sending the PACKET-IN to the controller, while its rule
capacity is fully utilized. Therefore, control overhead between
switches and controller is reduced to a certain extent. Figure
1 presents such a scenario, where the fully occupied switch
has three different options to forward the traffic. However,
as depicted in Figure 2, the scheme proposed by Qiao et al.
[5] has the following limitations: a) as the outgoing port for
an incoming packet is chosen randomly, the packet may be
forwarded through the longest path, instead of the shortest
one; and b) the randomly chosen switch may also be fully
occupied. In such a case, the packet is further forwarded to

1Ternary content-addressable memory (TCAM) is a fast processing memory
present at SDN-enabled switches, which helps to search all available rules
against an incoming traffic in a single clock cycle.



Fig. 2: Motivating scenario: Forwarding traffic to a randomly
selected port may end up with — a) longest path from source
to destination; and b) another fully occupied switch

a switch, which is again randomly chosen. Eventually, the
packet reaches to the desired destination. In such a scenario,
the controller may also be unaware of such traffic flow in the
network as PACKET-IN is not sent to the former.

To deal with such a problem, we propose a dynamic traffic
engineering scheme in an SDN-enabled network with an aim
to forward the traffic in an adequate manner, while addressing
the above mentioned issues. An optimization problem is for-
mulated in the form of integer linear programming (ILP) to de-
termine the minimum number of candidate switches required
to forward the traffic for all possible affected2 switches in
the network. We propose a greedy heuristic approach to solve
the optimization problem in polynomial time, as finding an
optimal solution to the problem is NP-hard. Further, a packet-
tagging approach is applied to notify the controller about the
congestion occurred at a fully occupied switch. Simulation
results show that the proposed scheme is capable of reducing
number of PACKET-IN and congestion in the network, while
placing optimal number of candidate switches.

The rest of the paper is organized as follows. Section II
presents the state-of-the-art in dynamic traffic engineering
in SDN. Detailed system model and problem description
are presented in Section III. Further, the proposed approach
for dynamic traffic engineering in SDN-enabled networks is
presented. Section IV presents the simulation results to show
the effectiveness of the proposed scheme. Finally, Section V
concludes the paper while presenting some future research
directions.

II. RELATED WORK

In this Section, we present the state-of-the-art for traffic
engineering in SDN. Several schemes exist in the literature
for traffic engineering [3], [5]–[12]. For example, the bene-
fits of incorporating software-defined networking concepts in
traffic engineering is studied in [3]. The authors showed that
the SDN-based approach is capable of forwarding network

2Henceforth, we will use the term ‘affected’ for the switches, whose TCAM
is fully utilized.

traffic in an optimal manner, while leveraging the global
view of the network. Additionally, the authors formulated an
optimization problem for controller placement to place flow-
rules at the SDN switches deployed in the network. Caria
et al. [6] analyzed the performance of network migration
for traffic engineering in SDN for a given network topology.
The authors proposed an algorithm to select optimal number
of switches, which are required to be substituted by SDN
switches, so that the need for network capacity upgradation
is minimized. The proposed scheme consists of two phases
— a) candidate paths selection, and b) optimization of the
candidate paths. In the candidate path selection phase, all
possible alternative paths are determined for a given network
topology. In the second phase, the optimized paths are selected
from all possible alternative paths. Consequently, the authors
showed that optimal traffic engineering can be obtained while
substituting a subset of the general switches by SDN switches.

Segment routing is another important aspect in traffic en-
gineering by simplying the forwarding mechanisms. More
particularly, a source node is able to specify a unicast for-
warding path using the segment routing rather than specifying
a shortest path, through which the packet will traverse. It is
noteworthy that the segment routing was designed for SDN,
while providing simplicity and better utilization of network
resources in packet forwarding. Authors in [7]–[9] proposed
a segment routing-based traffic engineering scheme in SDN-
enabled networks, in which an architecture for segment routing
is also presented. In segment routing, the SDN switches
forward a packet to its next-hop switch without sending
PACKET-IN to the controller. Thus, frequent rule placement
at the switches can be avoided. Such an approach is useful
while rule capacity of an SDN switch is nearly/completely
utilized. Concurrently, Qiao et al. [5] proposed a waypoint
routing scheme, while the rule capacity of the switch is fully
utilized by active flows. In such a scenario, the affected
switch forwards the traffic to a randomly selected neighbor
without asking the controller. Consequently, the flow-rules at
the switch for active flows are not replaced by the new traffic.
Thus, message overhead for rule placement is avoided, while
rule capacity is fully utilized.

However, detailed analysis of the existing approaches on
traffic engineering reveals that there is a need to propose a
dynamic traffic engineering scheme to deal with the issues
mentioned in Section I. Therefore, we propose a dynamic
traffic engineering scheme for optimally forwarding network
traffic in SDN.

III. DYNAMIC TRAFFIC ENGINEERING

We consider a general SDN architecture consisting of
SDN-enabled switches/routers, controller, heterogeneous con-
strained networks/devices, and end-users. Typically, the het-
erogeneous constrained networks/devices are connected to the
backbone network through IoT gateways. Figure 3 shows a
schematic architecture of SDN consisting of all such devices.
In this work, our primary focus is traffic engineering at the



backbone networks, while considering incoming heteroge-
neous traffic in the network. The SDN switches simply forward

Fig. 3: A schematic architecture of software-defined network

an incoming traffic to another switch, based on the flow-rule
decided by the SDN controller. If a flow-rule associated with a
traffic does not exist at the switch, the switch sends a PACKET-
IN to the SDN controller. Typically, the PACKET-IN message
contains Header of the message with fields length, flow-table
ID, and data. After receiving the PACKET-IN, the controller
places adequate flow-rules at the switch, and the traffic is
forwarded based on the decided policies.

Candidate Switch: We define an SDN switch, S, as can-
didate switch (CS), C, if it satisfies the following properties:
• Total TCAM available at the switch is higher than the

TCAM available at other switches in the network. We
consider a predefined value, i.e., Stcam > Γ, where Stcam

and Γ denote the TCAM memory size and threshold
value, respectively.

• The switch has more than one neighbor in its one-hop
away, i.e., |Sneigh| > 1, where |Sneigh| defines the
number of neighbor switches in one-hop away.

Assumption 1. We assume that the network is fully SDN-
enabled, i.e., all the switches are SDN switches. For simplicity,
we consider a single SDN controller, which controls all the
switches in the network. However, multiple controllers can be
placed to control the switches by forming network clusters.

Assumption 2. All the SDN switches support OpenFlow
protocol [4] for flow-rule placement. Therefore, we utilize the
benefits of the OpenFlow protocol for the proposed traffic
engineering and packet-tagging approaches.

A. Problem Statement

Let there be an SDN-enabled backbone network consisting
of a set of SDN switches, which is represented as S =
{S1, S2, . . . , Sn}, n ∈ Z+. Our objective is to find out the
subset of switches from S need to be configured as candidate
switches, so that the traffic from an affected switch can be
forwarded to the candidate switch without generating the

PACKET-IN at the former. The set of candidate switches is
represented as C = {C1, C2, . . . , Ck}, where k ∈ Z+ and
C ⊆ S. Mathematically,

Minimize
∑
i

Ci

subject to ∑
i∈C

βi,j ≥ 1, where j ∈ S 6⊃ C, (1)

Ci,neigh ≥ 1, (2)
Lact
i,j = 1, where i ∈ C and j ∈ S 6⊃ C (3)

where Equation (1) denotes that there exists at least one
CS located at one-hop distance to which the traffic can be
forwarded from an affected switch, j ∈ S 6⊃ C. βi,j is a binary
variable used to capture the availability of such CS, i ∈ C,
from an affected switch (AS), j ∈ S 6⊃ C. Mathematically,

βi,j =


1, if packet forwarding is possible from

AS, j ∈ S 6⊃ C, to CS, i ∈ C
0, Otherwise

(4)

Equation (2) denotes that number of neighbors of the CS, i ∈
C, is greater than one, which, in turn, ensures that there exists
at least another switch to forward the packet from the CS.
Finally, Equation (3) ensures that the number of active links
between an AS, j ∈ S 6⊃ C, to CS, i ∈ C, is one, so that
redundancy of CS is avoided.

B. Greedy Heuristic Algorithm

The optimization problem presented in Section III-A is
an integer linear programming (ILP) problem consisting of
binary variables. Finding an optimal number of CS required
to forward the traffic from an AS in the network is an NP-hard
problem [13]. Consequently, we propose a greedy heuristic ap-
proach to solve the optimization problem in polynomial time.
Algorithm 1 presents the proposed greedy heuristic algorithm.
Time complexity of the proposed greedy algorithm consists of

Algorithm 1: Greedy Heuristic Algorithm
Input: Set of switches, S; Adjacency matrix, M, An

array, A, with size |S|
Output: Set of candidate switches, C

1 Set |C| = φ, Sflag = 0 ∀S ∈ S;
2 Sort all the switches S ∈ S in descending order

according to the number of their neighbors using M, and
put them in A;

3 for i = 1 to |S| do
4 if A[i]flag == 0 && A[i]neigh > 1 then
5 C = C ∪ {A[i]};
6 for j = i+ 1 to |S| do
7 if βA[i],j == 1 then
8 Sl,flag = 1;

9 Return C;



three phases – adjacency matrix formation, sorting and greedy
algorithm. The running time complexities for adjacency matrix
formation and sorting are O(|S|2) and O(|S|log|S|) having
|S| number of switches in the network. The running time
complexity for greedy approach is O(|S|2). Therefore, total
running time complexity of the proposed algorithm is

(
O(|S|2)

+ O(|S|log|S|) + O(|S|2)
)
⇒ O(|S|2).

Fig. 4: Example: greedy heuristic approach for candidate
switch selection for a given network

Example: Figure 4 shows an example of selecting candidate
switches for a given network using greedy heuristic approach.
In the example, part of the Bandcon [14] network topology is
considered.

C. Tagging the PACKET-IN Message

We consider a modified version of OpenFlow protocol for
sending PACKET-IN to the controller. Figure 5 shows different
fields present in a PACKET-IN generated from an SDN switch
according to OpenFlow protocol specification [15]. We use

Fig. 5: PACKET-IN message sent to the controller

another name as f-tag in the reason field, and the value is set
as 0X03 to notify the controller that a packet is received by
a CS from an AS. It is noteworthy that the f-tag is used by
the CS only. This method helps the controller to minimize the
congestion at the AS further by placing the flow-rules in such
a manner that new packets are not forwarded to the particular
AS. It is noteworthy that the proposed approach can easily
be integrated atop the existing SDN, in which OpenFlow is

used as the communication protocol between the switch and
the controller.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed scheme, we
consider five different network topologies — Arnes, Atmnet,
AttMpls, Geant2012, and Goodnet [14]. The number of nodes
and links present in the networks are presented in Table I.
Different parameters considered to conduct the experiment

TABLE I: Network topologies considered for experiment [14]

Network
Topology

Number of
Switches (bi-
directional)

Number of
Links

Arnes 34 46
AttMpls 25 56
Atmnet 21 22
Geant2012 40 61
Goodnet 17 31

are summarized in Table II. We consider the rule-capacity of

TABLE II: Simulation Parameters

Parameters Value
Rule Capacity 460 (for HP S-2920) & 1526

(for HP S-3500) [16]
Source & Destination Uniform Random
Number of Packets 22000 – 32000
Flow-Rule Placement Exact-Match

normal and candidate switches as 460 and 1526 according to
the hardware support of HP S-2920 and HP S-3500 switches,
respectively [16]. For flow-rule placement, we consider exact-
match for all packets in the network. It is noteworthy that some
of the packets have the same property, i.e., all fields in two
different packets may be same. Therefore, a single flow-rule is
applied for multiple packets in order to take desired action. We
first determine the number of candidate switches required for
a given network topology. Accordingly, we present the results
for number of CS required for different network topology.
Further, we evaluate the number of affected switches (AS)
with different number of packets using the AttMpls network
topology.

To show the effectiveness of the proposed scheme, we evalu-
ate the number of PACKET-IN and number of congestion sce-
narios in the network. It is noteworthy that we use the AttMpls
network topology to present the results for PACKET-IN and
congestion. Number of PACKET-IN denotes the total number
of PACKET-IN received by the SDN controller. On the other
hand, number of congestion scenarios represent the number
of packets that experienced congestion at switches due to the
rule-capacity constraints. We compared the performance of the
proposed scheme with two different schemes — OpenFlow-
based forwarding (OFS) and Randomized forwarding (RFS)
[5]. In OFS, an existing rule is replaced by a new one,



if the rule-capacity of the switch is fully occupied. On the
other hand, in RFS, the packet is forwarded to a randomly
selected outgoing port without sending the PACKET-IN to
the controller. Henceforth, we use the terms OFS and RFS
to denote the existing schemes.

A. Number of Candidate and Affected Switches

We evaluate the number of candidate switches required to
forward the traffic from an affected switch in the network
according to the optimization problem and the proposed solu-
tion presented in Section III. Figure 6 shows the number of
candidate switches required with different network topology.
We see that the number of CS increases with an increase in
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Fig. 6: Number of candidate switches with different network
topology

the number of switches in the network. However, it remains
unchanged for certain number of switches in the network. This
is due to the fact that the number of required CS also depends
on the number of links present in the network. For a dense
network, number of CS is lower compared to a sparse network.
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Further, Figure 7 shows the number of affected switches
(AS) with different number of packets using AttMpls network.
We see that the number of AS increases with an increase in
the number of packets in the network. Finally, all the normal
switches are affected with large number of packets in the
network, and they forward traffic to the candidate switches.

B. PACKET-IN Message

Figure 8 shows the total number of PACKET-IN received
by the controller with different number of packets in the

network. We see that less number of PACKET-IN is sent to the
controller using the proposed scheme, DynamiTE (proposed),
and the existing scheme RFS. However, DynamiTE outper-
forms the OFS scheme in terms of the number of PACKET-
IN sent to the controller. In DynamiTE and RFS, a switch
does not send the message to the controller, if the rule-
capacity is fully occupied. Therefore, the flow-rule associated
with an active flow is not deleted. In contrast, the switch
always sends the PACKET-IN on receiving a new packet
without considering the residual rule-capacity. Consequently,
more number of PACKET-IN is received by the controller
using OFS than that of using DynamiTE (proposed) and RFS.
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C. Congestion

Figure 9 denotes the number of packets that experienced
congestion in the network using different schemes — Dyna-
miTE (proposed), OFS and RFS. We see that the number of
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Fig. 9: Number of congestion occurred with different number
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packets that experienced congestion is the same for DynamiTE
(proposed) and OFS. On the other hand, it is higher in case
of RFS than that with the DynamiTE (proposed) and OFS
schemes. In RFS, the packet is forwarded to a randomly
selected switch, which can be further congested. Consequently,
we have more number of congestion instances occurring using
the RFS scheme.

Finally, we see that the proposed scheme, DynamiTE,
outperforms the existing schemes — RFS and OFS — in terms



of the number of PACKET-IN and the number of congestion
instances in the network, respectively. The proposed scheme is
capable of reducing the number of PACKET-IN and congestion
in the network by 10% and 38%, respectively.

V. CONCLUSION

In this paper, we proposed a dynamic traffic engineering
scheme, DynamiTE, in an SDN-enabled network with an aim
to minimize the number of PACKET-IN messages and conges-
tion instances in the network. We proposed a greedy heuristic
approach to determine optimal number of switches required to
be configured as candidate switches. Further, we also proposed
a packet-tagging approach to notify the SDN controller that
rule-capacity of a switch is fully occupied. Through extensive
simulation results, it is evident that the proposed scheme is
capable of reducing the number of PACKET-IN received by
the controller by 10%, compared to an OpenFlow-based for-
warding scheme. Further, the proposed scheme is also capable
of reducing the number of congestion instances occurring in
the network due to rule-capacity constraint by 38%, compared
to the existing randomized forwarding scheme.

The candidate switches have higher TCAM compared to
the other switches in the network. However, rule-space of the
candidate switches can also be fully utilized in the presence
of large number of packets in the network. Therefore, some of
the active flow-rules are required to be deleted from the candi-
date switches to insert new rules. Consequently, PACKET-IN
messages are generated. We plan to analyze such overflow
problem at the candidate switches as the future extension of
this work.
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