
Open5gs-k8s Overview
Purpose
Deploys the Open5GS core (3GPP R16 compliant) on Kubernetes.

Key Features

Microservices Architecture: Each network function (NF) operates as an
independent pod for modularity and scaling.

Network Slicing: Configurable deployment supports two or more network slices.

Software-define Networking: Leverages Open vSwitch and Multus CNI for
software-defined networking, compatible with OpenFlow controllers (e.g., ONOS).

Extensive Testing: Validated with open-source projects (UERANSIM,
OpenAirInterface, srsRAN) and tested on real hardware, including SDRs and
COTS UEs.

1

Deploying open5gs-k8s
Deployment involves 3 primary phases:

1. Core Deployment: Configure persistent storage and network attachment definitions.
Deploy Open5GS core network functions in dedicated Kubernetes pods, along with the
necessary services to facilitate inter-pod communication.

2. Subscriber Management: Add and manage subscribers through the Open5GS
web-based GUI.

3. RAN Deployment: Deploy UERANSIM for simulated gNodeB and UE instances,
facilitating end-to-end testing.

2

Before Starting Deployment
1. Navigate to the home directory
Use the cd ~ command to ensure you’re starting from your home directory.

2. Clone the open5gs-k8s repository
Use git clone to fetch the source code from the Monarch GitHub repository.

git clone https://github.com/niloysh/open5gs-k8s.git
cd open5gs-k8s

3. Set Up Your Testbed
Make sure you’ve set up your testbed using the Testbed Automator. Verify that all pods
are in the RUNNING state. You can quickly check the status of all pods with kubectl
get pods -A .

3

https://github.com/niloysh/testbed-automator

Phase 1 - Core Deployment

4

5G Core Network
The 5G Core features a decomposed architecture, with each Network Function (NF)
capable of registering for and subscribing to services offered by other NFs. HTTP/2 is
used as the primary communication protocol for these interactions.

The diagram below highlights key interfaces, including the N2 , N3 , and N4
interfaces.

5

Core Deployment
Configuration (1/6)
Navigate to the ~/open5gs-
k8s/open5gs directory, which
contains two subdirectories: common
and slices .

6

Core Deployment
Configuration (2/6)
The common directory holds
subdirectories for each network
function (e.g., amf, smf). Each
network function subdirectory (e.g.,
amf) contains a deployment.yaml ,
service.yaml , and
configmap.yaml .

7

Core Deployment Configuration (3/6)
The deployment.yaml file defines the deployment for the network function, running
the appropriate open5gs image.

kind: Deployment
metadata:
 name: open5gs-amf <==== name of the deployment
 labels:
 app: open5gs
 nf: amf
spec:
 ...
 containers:
 - image: ghcr.io/niloysh/open5gs:v2.6.4-aio <==== container image

8

Core Deployment Configuration (4/6)
The service.yaml file configures the Kubernetes service for the network function,
exposing the necessary ports, for example port 80 for communication with other NFs
over the service based interface (SBI).

apiVersion: v1
kind: Service
metadata:
 name: amf-namf <==== name of the service
 ...
spec:
 ports:
 - name: sbi
 port: 80 <==== exposed port
 ...

9

Core Deployment Configuration (5/6)
The configmap.yaml file contains configuration settings specific to the network
function. For example, the AMF configmap contains the supported PLMN.

kind: ConfigMap
metadata:
 name: amf-configmap
 ...
data: <==== network function specific configuration
 ...
 plmn_support:
 - plmn_id:
 mcc: 001
 mnc: 01
 ...

10

Core Deployment Configuration (6/6)

The slices directory holds subdirectories for each slice. Each slice subdirectory in
turn contains UPF and SMF NF subdirectories, consisting of deployment , service ,
and configmap files.

There are two slices defined, as shown in the figure. 11

Deploying the Core Network
1. Run the deployment script

./deploy-core.sh

This script will automatically perform the following tasks:

Setup persistent storage: Deploy MongoDB and setup local persistence to store
subscriber data and NF profile data.

Setup networking: Deploy Multus network attachment definitions (NADs) for
using OVS-CNI for the N2 , N3 and N4 networks.

Deploy Kubernetes resources: Deploy deployments , configmaps , and
services for each network function in the core.

12

Verifying Core Deployment (1/2)
All open5gs-k8s components are deployed in the open5gs namespace. While the
core is being deployed, you can use kubectl get pods -n open5gs with the watch
command in a new terminal to see the progress.

watch kubectl get pods -n open5gs

It can take a while for all pods to reach the RUNNING stage. 13

Verifying Core Deployment (2/2)
Once all the pods are in the RUNNING stage, we can take a look at the logs.
For example, we can look at the AMF logs as follows:

kubectl logs deployments/open5gs-amf -n open5gs

You should see logs similar to those seen above, e.g., stating AMF initialize done .

14

Phase 2 - Subscriber Management

15

Adding Subscribers using the Open5GS GUI (1/4)
Now that our core has been deployed, let's add some subscribers using the Open5GS
GUI.

Navigate to http://localhost:30300/ and login with credentials: username: admin and
password: 1423 . We can now add subscribers as shown.

16

http://localhost:30300/

Adding Subscribers using the Open5GS GUI (2/4)
Navigate to data/sample-subscribers.md in VSCode. You should see two
subscribers, Subscriber 1 and Subscriber 2 , one for each slice.

17

Adding Subscribers using the Open5GS GUI (3/4)
Use the GUI to fill out the fields given in data/sample-subscribers.md for each
subscriber, leaving other fields at their default values.

18

Adding Subscribers using the Open5GS GUI (4/4)
You can scroll down to get to SST , SD etc. Don't forget to set Type to ipv4 .

Note: Do the same for Subscriber 2.

19

Phase 3 - RAN Deployment

20

Deploying the RAN
1. Run the deployment script

./deploy-ran.sh

This script will automatically perform the following tasks:

Deploy the UERANSIM gNB: Deploy the deployment , service and
configmap for the UERANSIM gNodeB.

Deploy the UERANSIM UEs: Deploy two simulated UEs, one for each slice.
These UEs have been pre-configured with the subscriber information you added
earlier.

21

Verifying the RAN Deployment (1/3)
In your terminal where the kubectl get pods -n open5gs command is running, you
should observe a new pods for UERANSIM as shown below:

We can also check the AMF logs again. You should see Number of AMF-Sessions is
now 2 indicating 2 UEs connected.

22

Verifying the RAN Deployment (2/3)
Next, let's look at the gNodeB logs.

kubectl logs deployments/ueransim-gnb -n open5gs

Scroll to the top. You should see a successful NG setup procedure when the gNodeB
connects to the AMF.

23

Verifying the RAN Deployment (3/3)
To verify the RAN deployment, check the UE logs:

1. View Logs: Use the following command to view the logs for the ue1 pod:

kubectl logs deployments/ueransim-ue1 -n open5gs

2. Check for PDU Session: Look for a successful PDU Session Establishment
message in the logs. You should also see the TUN interface being set up.

3. Check IP Address: The 10.41.X.X IP address displayed in the logs is the IP
assigned to the UE. 24

Sending Traffic through the Slices (1/3)
With the RAN deployment complete, it's time to send traffic through the slices.

1. Access UE Pod: Open a shell on the ue1 pod with the following command:

kubectl exec -it deployments/ueransim-ue1 -n open5gs -- /bin/bash

2. Verify Interface: Inside the pod, run ip a to check the interfaces. Look for the
uesimtun0 interface, which indicates the active PDU session and connection to the

5G network.

25

Sending Traffic through the Slices (2/3)
To send traffic through the slice, perform a ping test to google.ca using the
uesimtun0 interface:

ping -I uesimtun0 www.google.ca

You should see output similar to the screenshot below, indicating successful traffic
transmission through the slice.

26

Sending Traffic through the Slices (3/3)
To confirm the pings are routed through the 5G network, follow these steps:

1. Access UPF1: In a new terminal, open a shell on the UPF1 pod (connected to
slice1):

kubectl exec -it deployments/open5gs-upf1 -n open5gs -- /bin/bash

2. Check Interfaces: Run ip a to see the tunnel interface representing the N3 GTP-
U endpoint. Look for the ogstun interface with an IP address (e.g., 10.41.0.1/16).

3. Capture Traffic: Use tcpdump to capture packets on the tunnel interface:

tcpdump -i ogstun

You should see ping traffic like this:

18:34:29.550600 IP vpn-uw-ft-10-41-0-2 > yyz10s17-in-f3.1e100.net: ICMP echo request 27

Next Steps
Congratulations!
You've successfully done the following:

Completed the deployment of 5G core on Kubernetes.

Learned how to add subscribers to the core network.

Connected simulated gNodeB and UEs to network slices and sent traffic through
them.

What's Next?
Dive deeper into the core configuration by continuing to Lab 1.

28

https://niloysh.github.io/open5gs-k8s/labs/lab1/README.pdf

