
Deploying Monarch
Deployment involves 4 primary phases:

1. External Components: Deploy the Service Orchestrator and NFV Orchestrator,
ensuring they are prepared to manage and support Monarch’s functions.

2. Core Monarch Components: Set up Monarch’s core modules that handle critical
processing and system coordination.

3. Network Slice Segment (NSS) Components: Install the NSS components across
all segments for full slice coverage. For our workshop, we only have one segment.

4. Slice Monitoring and KPI Modules:
Submit a monitoring request to trigger the creation of Monitoring Data Exporter and KPI
Computation Modules.

1

Before Starting Deployment
1. Navigate to the home directory
Use the cd command to ensure you’re starting from your home directory.

2. Clone the Monarch repository
Use git clone to fetch the source code from the Monarch GitHub repository.

cd ~
git clone https://github.com/niloysh/5g-monarch.git
cd 5g-monarch

3. Set Up Environment Variables
Monarch involves several interconnected components, so it's crucial to configure them
correctly to ensure they can communicate with each other.

Open the .env file in VSCode and locate the NODE_IP field.

Run the ./replace-node-ip.sh script to automatically add the correct node IP. 2

Phase 1 - Deploying External Components

3

External Components

4

Deploying External Components
1. Run the deployment script
Execute the following command to set up essential external dependencies for Monarch,
including the Service Orchestrator and NFV Orchestrator.

./deploy-external.sh

What this does:

Service Orchestrator: Allows Monarch to retrieve information about network
functions (NFs) in each slice and the segments in which these NFs are deployed.

NFV Orchestrator: Manages the deployment of network functions (NFs) and
Monarch's data exporters within the network.

Note: In this workshop, we assume simple implementations of these components for
demonstration purposes. Projects such as ONAP (Open Network Automation Platform)
provide can realistic implementations for these components. 5

Testing External Components
Once deployed, you can test the external components with the testing script.

./test-external.sh

6

Phase 2 - Deploying Monarch Core Components

7

Monarch Core Components

8

Deploying Monarch Core
1. Run the deployment script

./deploy-monarch-core.sh

This script will initialize key core modules, including:

Request Translator and Monitoring Manager – Deployed using Python Flask,
these components handle translation of monitoring requests and management of
monitoring tasks.

Data Store – Configured with MongoDB for database storage and MinIO S3 for
scalable object storage.

Data Distribution – Uses Thanos to efficiently collect monitoring data from
different network segements.

Data Visualization – Leverages Grafana for comprehensive visualization of key
performance indicators (KPIs) and metrics. 9

Verifying Monarch Core Deployment
Monarch components are deployed in the monarch namespace.
While Monarch components are being deployed, you can use kubectl get pods -n
monarch with the watch command in a new terminal to see the progress.

watch kubectl get pods -n monarch

10

Testing Monarch Core Components
Once deployed, you can test the Monarch core components with the testing script.

./test-monarch-core.sh

11

Accessing Graphical User Interfaces (GUIs)
Some Monarch components provide user-friendly GUIs, enabling you to monitor and
visualize data effectively.

Thanos (Data Distribution)

Access Thanos at: http://localhost:31004

Use Thanos to explore distributed data storage and retrieve historical monitoring
data. We will see how to use Thanos later in Lab3.

Grafana (Data Visualization)

Access Grafana at: http://localhost:32005. Login details are: username: admin
and password: monarch-operator .

Grafana enables interactive dashboards and visualization of key performance
indicators (KPIs). After submitting a monitoring request, you'll view a slice KPI
monitored live in the Grafana dashboard. 12

http://localhost:31004/
file:///home/n6saha/5g-monarch/labs/lab3/README.md
http://localhost:32005/

Phase 3 - Deploying Monarch NSS Components

13

Deploy Monarch NSS Components
1. Run the deployment script

./deploy-monarch-nss.sh

What this does:
This script initializes the NSSDC (Network Slice Segment Data Collector), which is
implemented using Prometheus.

Prometheus is an open-source monitoring toolkit. It collects and stores metrics as time
series data, offering powerful querying capabilities and seamless integrations with tools
like Grafana for visualization.

We will cover Prometheus in more detail in Lab 1 and Lab 2, where you will learn how
to instrument an application to expose metrics to Prometheus and work with the
Prometheus query language.

14

Verify and Test Monarch NSS Deployment
Monitor the status of the prometheus-nssdc-prometheus-0 pod. Wait for it to become
READY (3/3) .

Once it is ready, you can test the Monarch NSS components with the testing script.

./test-monarch-nss.sh

You can access the Prometheus GUI at: http://localhost:30095

15

http://localhost:30095/

Phase 4 - Network Slice Monitoring

16

Submitting a Slice Monitoring Request (1/4)
To submit a slice monitoring request, we interact with the Request Translator module,
which processes the request and forwards it for further actions.

1. Create the JSON Request
The request is submitted using a JSON file, where you define the KPI for monitoring.
Here's a snippet from the request_translator/requests/request_slice.json file:

{"kpi":
{"kpi_name":"slice_throughput",
"kpi_description":"Throughput of the network slice",
"sub_counter":{"sub_counter_type":"SNSSAI",
"sub_counter_ids":["1-000001","2-000002"]}}}

We can submit a request as follows:

cd request_translator
python3 test_api.py --json_file requests/request_slice.json submit 17

Submitting a Slice Monitoring Request (2/4)
After submitting the slice monitoring request, Monarch will initiate the creation of
Monitoring Data Exporters (MDEs) and the KPI computation module.

1. Verify MDE Creation
Once the request is processed, three metrics services should be created,
corresponding to the MDEs. You can verify their creation by running the following
command:

kubectl get svc -n open5gs | grep metrics

2. Check for KPI Calculator Pod
Next, in your terminal where the kubectl get pods -n monarch command is running,
you should observe a new pod for the KPI Calculator. This pod is responsible for
calculating and processing KPIs based on the monitoring data.

18

Submitting a Slice Monitoring Request (3/4)
3. View Logs of the KPI Calculator
To inspect the logs of the KPI calculator pod, use the following command:

kubectl logs deployments/kpi-calculator -n monarch

In the logs, you should see output indicating that the slice SNSSAI is being monitored,
but with a rate of 0 Mbps (since no traffic is flowing through the slice during this phase).

19

Submitting a Slice Monitoring Request (4/4)
4. Send Traffic to Trigger KPI Calculations
To observe the monitoring in action, send traffic through the slice(s) by performing a
ping test.

You can do this from the UE1 and UE2 pods, using the uesimtun0 interface, just like
we did earlier in the core deployment session.

kubectl exec -it deployments/ueransim-ue1 -n open5gs -- /bin/bash

ping -I uesimtun0 www.google.ca

Once you've started the ping test, keep it running and check the KPI calculator logs
again.

20

Visualizing Slice KPI using Grafana (1/4)
1. Access Grafana
Open the Grafana interface (http://localhost:32005) and log in using the following
credentials: username: admin and password: monarch-operator .

2. Navigate to the Monarch Dashboard
Once logged in, select Dashboards from the left sidebar. Locate and open the
Monarch Dashboard, which has been pre-configured to display the
slice_throughput KPI for our two slices.

21

http://localhost:32005/

Visualizing Slice KPI using Grafana (2/4)

Each panel shows throughput per slice and direction (uplink/downlink). At the bottom,
you'll find the Session IDs (SEIDs) associated with each slice.

If you deployed UE3 in our previous core deployment session, you should see two
SEIDs displayed here, corresponding to multiple active sessions. 22

Visualizing Slice KPI using Grafana (3/4)
To customize a panel, click the 3 little dots in the corner, and select the Edit option:

In the edit view, you'll notice the Data Source – The data source for this panel is
Thanos, which aggregates and retrieves monitoring data.

23

Visualizing Slice KPI using Grafana (4/4)

In the Metrics Browser section, you'll see a query written in PromQL (Prometheus
Query Language). This query defines how the data is fetched and displayed on the
panel. We will look at PromQL in detail in our Labs.

24

Looking Under the Hood
Now that the slice KPIs are being computed, let's run Monarch core test script again.

./test-monarch-core.sh

This time, in the Monitoring Manager test output, you should see the monitoring
directives that were generated from the high-level monitoring request we submitted
earlier.

25

Next Steps
Congratulations!
You've successfully completed the following:

Completed deployment of Monarch.

Submitted a slice monitoring request.

Visualized slice KPIs in Grafana.

What's Next?
Continue to Lab 1 to learn about using instrumenting applications with metrics support
and querying metrics.

26

https://niloysh.github.io/5g-monarch/labs/lab1/README.pdf

