
Lab 1: Prometheus Fundamentals
Monarch NSSDC is powered by Prometheus for monitoring and data collection.

In this lab, you will learn essential Prometheus concepts, including:

Introduction to Prometheus – What it is and how it works

Instrumentation – How to expose application data to Prometheus

Service Discovery – How to automatically track your exposed metrics

1

What is Prometheus?
Prometheus is a metrics-based
monitoring toolkit that provides
libraries and components for:

Tracking and exposing metrics

Collecting metrics

Storing metrics

Querying metrics

2

Accessing Prometheus
Use kubectl get pods -n monarch to verify our Prometheus deployment as
Running .

prometheus-nssdc-prometheus-0 3/3 Running 0 36m

You can access Prometheus GUI at http://localhost:30095/

3

http://localhost:30095/

Prometheus Targets
In Prometheus, a target is a resource or endpoint that provides metrics for collection.

4

What are the Targets for Monarch?

Target: monarch-service (1/1 up) – tracks metrics from Monitoring Data
Exporters (MDEs).

Status Indicator: The number (1/1 up) shows how many services are discovered
and actively monitored. For instance, if all MDEs are running, you’ll see (4/4 up).

5

Service Discovery (1/2)
Prometheus uses dynamic service discovery, eliminating the need for manual
configuration of each service, device, pod, or container.

Flexible Discovery Options: Prometheus supports various discovery
mechanisms, including file-based and HTTP methods.

Kubernetes Integration: In Monarch, we leverage Kubernetes service discovery
to automatically detect and monitor dynamic endpoints, such as pods, containers,
and services.

6

Service Discovery (1/2)
The following snippet from nssdc/values.yaml shows how we configure Prometheus
to automatically discover services in the open5gs and monarch namespaces:

additionalScrapeConfigs:
 - job_name: "monarch-service"
 scrape_interval: 1s
 kubernetes_sd_configs:
 - role: service
 namespaces:
 names:
 - 'open5gs'
 - 'monarch'

7

Instrumenting Applications with Prometheus SDK
Prometheus offers SDKs in various languages (e.g., Python, C, Java) to enable
applications to expose metrics for monitoring.

In this lab, we’ll use the Python SDK to instrument a sample application.

1. Navigate to the lab1 directory:

cd labs/lab1

2. Inspect the Instrumented Code:

Open app/exporter.py in VSCode to see a Python application for generating
simulated metrics for this workshop.

The app is instrumented with the Prometheus Python SDK to expose metrics.

8

Prometheus SDK

9

Sample application with Prometheus SDK (1/2)
1. Importing Prometheus Libraries

from prometheus_client import start_http_server, Gauge

start_http_server : Starts a local HTTP server to expose metrics so
Prometheus can scrape them.

Gauge : A metric type in Prometheus for tracking values that can go up and down,
like response times or temperatures.

2. Defining a Custom Metric

RESPONSE_TIME = Gauge('workshop_response_time_seconds',
'Response time in seconds', ['service', 'region'])

We create a gauge metric named workshop_response_time_seconds .

We add service and region labels to specify the origin of each metric instance. 10

Sample application with Prometheus SDK (2/2)
3. Setting Metric Values

RESPONSE_TIME.labels(service=service, region=region)
.set(metric_values[(service, region)])

Labels: The labels method assigns values to the metric’s service and region
labels.

Set Value: set() updates the gauge with the latest response time value for that
specific service and region.

4. Starting the Metric Server

start_http_server(8000)

Launches an HTTP server on port 8000, allowing Prometheus to scrape exposed
metrics from this application. 11

Deploying our Sample Application
The deployment.yaml file shown below deploys prom-exporter which contains our
sample application instrumented with Prometheus SDK.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: prom-exporter
...

kubectl apply -f deployment.yaml

Once running, open a shell using:

kubectl exec -it deployments/prom-exporter -n monarch -- /bin/bash

12

Checking Metrics
Since our pod is exposing metrics on port 8000, we can check that using

curl http://localhost:8000

Expected Output
If you scroll to the bottom, you should see our instrumented metrics:

HELP workshop_response_time_seconds Response time in seconds
TYPE workshop_response_time_seconds gauge
workshop_response_time_seconds{region="us-west",service="auth_service"} 0.3252940783542173
workshop_response_time_seconds{region="us-east",service="auth_service"} 0.8983759103853045
workshop_response_time_seconds{region="us-west",service="payment_service"} 0.9844379249303663
workshop_response_time_seconds{region="us-east",service="payment_service"} 0.9593282198671773

Next, let's look at how to deploy a service so that these metrics will be automatically
discovered by Prometheus using Kubernetes service discovery.

13

Deploy Service for Metric Discovery
The service.yaml file shown below shows how we can deploy a service with some
annotations that help Prometheus in discovering this service.

metadata:
 name: prom-exporter-service
 annotations:
 prometheus.io/scrape: "true"
 prometheus.io.scheme: "http"
 prometheus.io/path: "/metrics"
 prometheus.io/port: "8000" # which port should Prometheus scrape

Once deployed using kubectl apply -f service.yaml , you should see the target
show up in the Prometheus targets.

14

Next Steps
Congratulations!
You've successfully completed the following:

Learned about Prometheus and its basic capabilities.

Deployed a sample application instrumented with the Prometheus SDK to expose
metrics.

Configured a Kubernetes service that enables Prometheus to automatically
discover and scrape the target.

What's Next?
Continue to Lab 2 to learn the basics of querying and extracting insights from the
collected metrics.

15

https://niloysh.github.io/5g-monarch/labs/lab2/README.pdf

